MODEL 130B/BR

OSCILLOSCOPE

TABLE OF CONTENTS

Section		Page	Section		Page
I	GENERAL DESCRIPTION	1-1	III	THEORY OF OPERATION (cont'd)	
	1-1. General.	1-1		3-7. High Voltage Power Supply .	3-4
	1-2. Damage in Transit.	1-1		3-8. Calibrator. .	3-4
	1-3. Power Line Voltages	1-1			
	1-4. Power Cord	1-1	IV	MAINTENANCE.	4-1
	1-5. Installation of Rack Mount.	1-1		4-1. Introduction. .	4-1
	1-6. Cathode Ray Tube W	1-2		4-2. Simple Check Procedure	4-1
				4-3. Removing the Cabinet.	4-3
				4-4. Isolating Troubles to Major	
II	OPERATING INSTRUCTIONS	2-1		Sections	4-3
	2-1. Controls and Terminals	2-1		4-5. Connecting for 230 Volt Operation	4-3
	2-2. Rear-Access Terminals.	2-1		4-6. Tube Replacement	4-4
	2-3. Warm-Up Drift	2-1		4-7. Condensed Test and Adjustment	
	2-4. AC or DC Coupling	2-2		Procedures .	4-5
	2-5. Balanced Inputs	2-2		4-8. Adjustment Proce dure	4-9
	$2-6$. Operating Procedures	2-2		4-9. Turn On	4-9
				4-10. Power Supplies	$4-9$
				4-11. Replacing and Adjusting the CRT.	4-11
III	THEORY OF OPERATION.	3-1		4-12. Checking and Adjusting the	
	3-1. General Content	3-1		Calibrator .	4-13
	3-2. Over-All Operation	3-1		4-13. Adjusting the Vertical Amplifier -	4-13
	3-3. Vertical Amplification Channel .	3-1		4-14. Adjusting the Horizontal Amplifier	4-15
	3-4. Horizontal Amplification			4-15. Phase Shift Adjust	4-15
	Channel. .	3-2		4-16. Adjusting Preset	4-17
	3-5. Sweep Generator	3-2		4-16. Adjusting the Sawtooth Generator	
	3-6. Low Voltage Power Supply	3-3		and Sweep Amplifier. . . .	4-17

LIST OF ILLUSTRATIONS

SPECIFICATIONS

SWEEP

Sweep Range:
$0.2 \mu \mathrm{sec} / \mathrm{cm}$ to at least $12.5 \mathrm{sec} / \mathrm{cm} .21 \mathrm{cal}-$ ibrated sweeps, accurate within $\pm 5 \%$, in a $1-2-5-10$ sequence, $1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$. Vernier permits continuous adjustment of sweep time between calibrated steps and extends slowest sweep time to at least $12.5 \mathrm{sec} / \mathrm{cm}$.

Magnifier:
X5 Magnifier may be used on all ranges and expands fastest sweep to $0.2 \mu \mathrm{sec} / \mathrm{cm}$. Accuracy within 10%.

Synchronization:
Internally from line voltage or from signals causing $1 / 2$ centimeter or more vertical deflection. Externally from 0.5 volts peak-to-peak or more.

Trigger Point:
Continuously adjustable from approximately -30 to +30 volts on either positive or negative slope of external synchronizing signal, or from any point of the vertical signal presented on the screen.

Preset Triggering:
Switch position on sweep mode control selects optimum setting for automatic triggering.

INPUT AMPLIFIERS
Vertical and horizontal amplifiers have same characteristics.

Sensitivity:
$1 \mathrm{mv} / \mathrm{cm}$ to at least $125 \mathrm{v} / \mathrm{cm} .15$ calibrated ranges, accurate within $\pm 5 \%$, in a $1-2-5-10$ sequence, $1 \mathrm{mv} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$. Vernier permits continuous adjustment between ranges and decreases sensitivity of $50 \mathrm{v} / \mathrm{cm}$ range to at least 125 volts/cm. Input voltage rating 600 volts dc or rms.

Phase Shift:
Within $\pm 1^{\circ}$ relative phase shift at frequencies up to 50 kc between vertical and horizontal amplifiers with verniers in cal.

Stability:
$1 \mathrm{mv} / \mathrm{hr}$ after warmup.
Bandwidth:
DC Coupling: dc to 300 kc . AC Coupling: 2 cps to 300 kc . Specified bandwidth is independent of sensitivity setting.

Balanced Input:
On 1, 2, 5, 10, 20 and $50 \mathrm{mv} / \mathrm{cm}$ ranges. Cabinet Mount input impedance: 2 megohms shunted with approximately 25 pf. Rack Mount input impedance 2 megohms, approximately 125 pf shunt capacity. Disconnecting the wires at the front panel which connect to the rear terminals reduces the input capacity to approximately 25 pf.

Common Signal Rejection:
(Balanced input only):
Rejection at least 40 db . Common signal must not exceed 1.5 volts.

Single Ended Input:
Cabinet Mount input impedance: 1 megohm shunted with approximately 50 pf. Rack Mount input impedance: 1 megohm, approximately 200 pf shunt capacity. Disconnecting the wires at the front panel connecting to the rear terminals reduces the input capacity to approximately 50 pf.

Internal Calibrator:

300 millivolts peak-to-peak $\pm 2 \%, 300$ cycles squarewave applied to vertical or horizontal amplifiers by CAL position of input attenuators.

SPECIFICATIONS (CONT'D.)

GENERAL

External Graticule (Standard):
Edge lighted graticule with controlled illumination, $10 \mathrm{~cm} \times 10 \mathrm{~cm}$, marked in centimeter squares with 2 mm subdivisions, on major horizontal and vertical axes.

Internal Graticule (Optional):
$10 \mathrm{~cm} \times 10 \mathrm{~cm}$, major horizontal.

CRT Plates:

Direct connection to deflection plates via terminals on rear. Sensitivity approximately 20 volts/cm.

Intensity Modulation:
Terminals on rear; 20 volts positive signal blanks CRT at normal intensity.

Dimensions:
Cabinet Mount: 9-3/4 in. wide, 15 in . high, $21-1 / 4 \mathrm{in}$. deep.

Rack Mount:

Weight:
Cabinet Mount: Net 41 lbs , shipping 54 lbs . Rack Mount: Net 47 lbs , shipping 62 lbs .

Cathode Ray Tube:
5 AQP mono-accelerator flat face type with 3000 volt accelerating potential. Available with P1, P2, P7 or P11 screen.

Power Supply:
$115 / 230$ volts $\bullet 10 \%, 50 / 1000$ cycles, 160 watts.
Filter Supplied:
Color of filter compatible with screen phosphor. Green for P1 and P2, Amber for P7, Blue for P11.

Rack Mount:
Has rear terminals in parallel with front panel. connections.

Accessories Furnished:
Supplied with Rack Mount. 130B-12P and Q Mounting Brackets (pair). Two 125-57 Plugs (mate with rear terminals). Two 125-59 Clamps for 125-57 Plugs.

Accessories Available:
AC-83A Viewing Hood; face-fitting molded rubber. Price $\$ 5.00$.
Additional Mounting Brackets. 130B-12P (left)
and 130B-12Q (right)'; \$2.50 a pair.

Price:
Model 130B, Cabinet Mount: $\$ 650.00$
Model 130BR, Rack Mount: \$650.00
Options:
2. P-2 CRT (installed)
3. Internal graticule CRT (installed)
7. P-7 CRT (installed)
11. P-11 CRT (installed)

Figure 1-1. Model 130B/BR Oscilloscope

SECTION
 GENERAL DESCRIPTION

1-1 GENERAL

The Hewlett-Packard Model 130B Oscilloscope is a general purpose oscilloscope. It can be used with either internal or external sweeps which can be either internally or externally synchronized and it can be obtained in either the cabinet or rack type mounting. Because of its high sensitivity and balanced input, the Model 130B may often be used directly with transducers, enabling you to see a direct presentation of phenomena desired without having to resort to preamplifiers.

Some of the special features of this oscilloscope are as follows:

A. LINEAR INTEGRATOR SWEEP GENERATOR

The accurate direct reading sweeps are obtained from a Miller-integrator sweep circuit which insures a high order linearity and stability. This type of sweep generator, is more reliable and independent of tube characteristics than other types of sweep generator.

B. X5 SWEEP EXPANSION

You speed observation and analysis of transients by expanding a two centimeter segment of the trace to 10 centimeters for easy viewing of detail. This X5 sweep expander, may be used on all sweep time settings and expands the fastest sweep time to .2 microsecond/cm.

C. CALIBRATED AMPLIFIERS

Voltage measurements of various waveforms are quickly made with the 130B, accurate within $\pm 5 \%$. A built-in calibrator which is accurate within $\pm 2 \%$ permits quick verification and standardization of the amplifier gain.

Phase shift measurements can be made accurately with this oscilloscope over a wide range of input frequencies.

1-2 DAMAGE IN TRANSIT

This instrument should be thoroughly inspected when it is received. If any damage is evident, refer to the "Claim for Damage in Shipment"' paragraph on the Warranty sheet in this manual.

1-3 POWER LINE VOLTAGES

The Oscilloscope is shipped from the factory wired for 115 volts ac line operation, unless otherwise specified. However, the instrument may also be operated from a 230 volts ac line source if the proper conversion is made to the power transformer. This conversion is described in the Maintenance Section (Section IV).

1-4 POWER CORD

The three conductor power cable supplied with the instrument is terminated in a polarized three prong male connector recommended by the National Electrical Manufacturers' Association. The third contact is an offset round pin, added to a standard two-blade ac plug, which grounds the instrument chassis when used with the appropriate receptacle. An adapter should be used to connect the NEMA plug to a standard two contact output. When the adapter is used, the ground connection becomes a short lead from the adapter which should be connected to a suitable ground for the protection of operating personnel.

1-5 INSTALLATION OF RACK MOUNT

The (4p) 130BR is designed so that it can be supported in a 19 inch rack by the front panel in the usual manner; or, the dust cover may be rigidly mounted in the rack with brackets as shown in Figure 1-1. In the latter case, the chassis is supported by the dust cover and may be slipped in
or out easily; the screws through the front panel merely holding the chassis in place. To rack mount the 130BR using the brackets:

1) Mount the bracket as shown in Figure 1-3 with screws through the outside holes of the brackets. The length of these screws may be chosen to space the front panel from the panel rails as desired. The brackets at the rear are not necessary in most installations but can be used if added support is required. These brackets are available from the Hewlett-Packard Company as an accessory item.
2) Remove the dust cover from the 130 BR and
mount it in the brackets with the 10-32 trusshead screws provided.
3) Slip the 130BR into the dust cover and fasten in place with screws through the front panel.

1-6 CATHODE RAY TUBE WARRANTY

The cathode ray tube (crt) supplied with the oscilloscope and replacement crt's purchased from Hewlett-Packard company are guaranteed against electrical failure for oneyear from the date of sale by Hewlett-Packard. Cathode Ray Tube Warranty sheet is illustrated in figure 1-2. A sheet for your use is included in the appendix of this manual.

Figure 1-2. Cathode Ray Tube Warranty

SECTION II OPERATING INSTRUCTIONS

2-1 CONTROLS AND TERMINALS

Front panel operation controls are shown in Figure 2-1. This description of the operating controls enables you to operate the instrument if you have a basic knowledge of oscilloscope technique. Detailed operating procedures are given in the operating plates.

INTERNAL SWEEP CONTROLS

SWEEP TIME/CM -

This switch determines the speed at which the crt beam crosses the screen. HORIZ. SENSITIVITY switch must be in an INT. SWEEP position or internal sweeps are not generated. Associated with the SWEEP TIME/CM switch is a concentric VERNIER which provides continuous adjustment of sweep speed between steps. A X5 sweep magnífier operates on all ranges.

SYNC -

This three position switch lets the sweep be triggered either internally or externally. Internal triggering can be accomplished from a line frequency signal or from an applied vertical input signal of sufficient amplitude to produce a onehalf centimeter deflection. External triggering can be produced by signals having amplitude greater than 0.5 volt, peak-to-peak.

SWEEP MODE -

As this control is rotated from the extreme clockwise position, the sweep generator will pass from an un-synchronized free-running (FREE RUN) condition through a condition where only triggered operation is possible (TRIGGERED) to a position in which sweeps will not occur. At the extreme counterclockwise position the control switches into a PRESET position. This position provides optimum triggering bias for nearly all waveforms.

TRIGGER LEVEL -

This continuous control selects the level on the sync waveform where triggering is to occur. When the TRIGGER LEVEL control is set to zero, the trigger circuits are the most sensitive.

TRIGGER SLOPE -

This two-position switch, concentric with TRIGGER LEVEL, permits triggering to occur on either the positive or negative slope of internal, external or line voltage sync signals.

Horizontal or Sync INPUT -
A set of three binding posts used for receiving external sync voltages and external generated sweeping voltages. On the rack mount model only, a 3-conductor receptacle J102, mounted at the rear of the instrument, is connected in parallel with the binding posts.

2-2 REAR-ACCESS TERMINALS
 ------DANGER - HIGH VOL TAGE-----

The following terminals are accessible through the rear access plate of the instrument cabinet: Horizontal and vertical deflection plates, and a terminal for crt intensity (Z-axis) modulation. See Figures 2-8 and 2-10.

2-3 WARM-UP DRIFT

When the oscilloscope is first turned on, drift in the trace will be quite noticeable, particularly at high sensitivities, the trace drift is fastest immediately following turn-on, becoming slower as the instrument warms up. Because of this drift, fine adjustment of amplifier balance should not be attempted until the instrument is thoroughly warm. For most purposes a 5 minute warm-up will be adequate.

2-4 AC OR DC COUPLING

AC coupling permits high gain to be employed without regard for the dc level involved. In the AC position the input signal (vertical or horizontal) is coupled to the amplifier through a capacitor which removes the dc component from the input. This coupling circuit has a low frequency cut-off at 2 cps . To avoid degrading input pulses or square waves below 200 cps it is advisable to use dc coupling. WHEN USING DC COUPLING THE AVERAGE VALUE OF THE DC DETERMINES THE POSITION OF THE SWEEP ON THE OSCILLOSCOPE. IF YOU ARE UNABLE TO FIND THE TRACE WITH THE VERTICAL POSITION CONTROL WHEN USING DC COUPLING, TRY AC COUPLING. When AC coupled the maximum dc that may be applied is 600 volts.

2-5 BALANCED INPUTS

The instrument will accept balanced input signals on the six most sensitive ranges. This arrangement is shown in Figure 2-7.

Driving the instrument from a balanced source can be very effective in removing the unwanted stray pickup that would otherwise obscure the desired information. To take advantage of the noise reduction that is possible with a balanced input, you must be sure that neither terminal of the source is connected to ground, and use double conductor shielded cable between the source and oscilloscope. The input cable shield must be connected to a suitable ground, either at the oscillloscope or some other point. With these precautions in the external input circuit, any stray signals (noise, hum, etc.) will be coupled equally to the two input terminals, and be cancelled by the differential amplifiers. Since the desired information is applied between the two input terminals, it will be amplified and displayed in the normal manner. Since the noise is a problem
mainly at low level, the fact that balanced input is available only on the most sensitive ranges is generally not a serious limitation.

The common-mode signal rejection will be at least 40 db ($1 / 100$ of the input signal). When using a balanced input certain limitations must be considered. The proper operating levels must be maintained on the input amplifier: The COM-MON-MODE SIGNAL VOLTAGE MUST NOT EXCEED 1.5 VOLTS EITHER POSITIVE OR NEGATIVE, ON EITHER INPUT TERMINAL. Note that this is the sum of all voltages (dc plus peak ac).

NOTE

If balanced ac coupling is desired, it is necessary to connect a capacitor in the external signal path to the middle terminal, since a dc voltage on this terminal only unbalances the amplifier. This arrangement is shown in Figure 2-7.

2-6 OPERATING PROCEDURES

Basic operating procedures are described in the following illustrations. Positions of controls are different on the cabinet model but their functions are identical to those of the rack model.

Figure Description

2-2 VERTICAL BALANCE ADJUSTMENT

2-3 HORIZONTAL BALANCE ADJUSTMENT
2-4 INTERNAL SWEEP-INTERNAL SYNCHRONIZATION
2-5 INTERNAL SWEEP-EXTERNAL SYNCHRONIZATION
2-6 EXTERNAL HORIZONTAL INPUT
2-7 AC COUPLING BALANCED INPUT
2-8 CONNECTION TO CRT DEFLECTION PLATES
2-9 EXTERNAL INTENSITY MODULATION
2-10 ALIGNING SCOPE TRACE WITH GRATICULE

VERTICAL BALANCE ADJUSTMENT

After Warm-up:

1. Turn SWEEP MODE control to FREE RUN.
2. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1.
3. Set SWEEP TIME/CM switch so that a convenient base line is formed. (Any sweep time faster than 50 MILLISECONDS/CM is satisfactory.)
4. Short vertical input terminals together.
5. Set AC-DC switch to DC.
6. Set VERT. SENSITIVITY to CAL. Turn VERNIER to CAL.
7. Center bottom portion of calibration sig- / nal trace using VERT. POS. control.
8. Set VERT. SENSITIVITY to 1 MILLIVOLTS/ CM.
9. Center trace with coarse (screwdriver) VERT. DC BAL. control or with fine (knob) control if unbalance is slight.
10. Repeat steps 6, 7,8 and 9 if necessary.

NOTE: A separate adjustment (Bal. Adj. on the etched board) is provided to balance the VERNIER.

Figure 2-2

HORIZONTAL BALANCE ADJUSTMENT

After warm-up:

1. Short together the horizontal INPUT terminals.
2. Set AC-DC switch to DC.
3. Set HORIZ. SENSITIVITY to CAL. Turn VERNIER to CAL.
4. Adjust the HORIZ. POS. control to place the left edge of the calibrating signal trace on the major vertical axis.
5. Set HORIZ. SENSITIVITY to 1 MILLIVOLT/CM.
6. Return the spot to the major vertical axis with the coarse (screwdriver) HORIZ. DC BAL. control or with the fine (knob) control if the unbalance is slight.
7. Repeat steps 2,34 , and 5 if necessary.

NOTE: A separate adjustment (Bal. Adj. on the etched board) is provided to balance the VERNIER.

Figure 2-3

INTERNAL SWEEP - INTERNAL SYNCHRONIZATION

1. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1 (or to X5 for magnified sweeps)
2. Set SYNC switch to INT.
3. Set SWEEP MODE to PRESET.
4. Connect vertical input signal into vertical input terminals.
5. Set AC-DC switch for type coupling desired.
6. Adjust VERT. SENSITIVITY for desired sensitivity.
7. Set TRIGGER SLOPE switch for triggering on positive or negative slope of input signal, as desired.
8. Set TRIGGER LEVEL control to 0 .
9. Select desired sweep speed with SWEEP TIME/CM switch.
10. Adjust TRIGGER LEVEL to start trace at desired level. In some cases, it may be necessary to switch SWEEP MODE from PRESET to an individual adjustment for the particular trace being viewed.

Figure 2-4

INTERNAL SWEEP - EXTERNAL SYNCHRONIZATION

1. Set HORIZ. SENSITIVITY switch to INT. SWEEP X1 (or to X5 for magnified sweeps).
2. Set SYNC switch to EXT.
3. Set SWEEP MODE to PRESET.
4. Feed synchronizing signal (0.5 volts $p-p$ or more) to the horizontal input terminals.
5. Set AC-DC switch for type coupling desired.
6. Set TRIGGER LEVEL to 0 .
7. Feed vertical input signal into vertical input terminals.
8. Adjust VERT. SENSITIVITY for desired sensitivity.
9. Select desired sweep speed with SWEEP TIME/CM switch.
10. Set TRIGGER SLOPE for triggering on positive or negative slope, as desired.
11. Adjust TRIGGER LEVEL to start trace at desired level. In some cases, it may be found necessary to switch SWEEP MODE from PRESET to an individual adjustment for the particular trace being viewed.

Figure 2-5

EXTERNAL HORIZONTAL INPUT

1. Feed horizontal signal to horizontal input terminals.
2. Set AC-DC switch for type of input coupling desired.
3. Set HORIZ. SENSITIVITY switch for desired sensitivity.
4. Adjust horizontal position of pattern with HORIZ. POS. control.

This type of input will be found useful for viewing Lissajous patterns, etc.

Figure 2-6

AC COUPLING BALANCED INPUT

The following procedure is for the vertical input, but is the same for the horizontal input.

1. Set VERT. SENSITIVITY to 50 MILLIVOLTS/ CM, input not balanced on higher ranges.
2. Set AC-DC switch to AC.
3. Disconnect shorting strap.
4. Connect 0.1 microfarad capacitor to midterminal.
5. Connect input signal to A and B.
6. Ground input at the black terminal.

The capacitor must be used to block any dc.

Figure 2-7

CONNECTION TO CRT DEFLECTION PLATES

The following procedure is for connecting external signals to the vertical deflection plates, but is the same for the horizontal plates.

1. Remove rear access plate fastened by four screws.
2. Remove the shorting bars between the Vertical Amplifier and terminals D3 and D4 and replace them with 1 megohm, $1 / 2$ watt resistor.

For balanced AC coupling:
3. Connect balanced signal through appropriate capacitor to D3 and D4.

For single-ended AC coupling:
4. Bypass D4 to chassis with an adequate capacity.
5. Connect the signal to D3 through an appropriate capacitor.
NOTE: If it is desired to have positive voltage $\overline{\text { deflect }}$ the beam downward, bypass D3 to chassis and connect the signal to D4.

Figure 2-8

EXTERNAL INTENSITY MODULATION

CAUTION: Dangerous Voltages are present on this terminal board. Be sure the instrument is turned off when making this connection.

To intensity modulate the CRT with external signals:

1. Remove rear access plate fastened by four small screws at rear of dust cover.
2. Remove shorting bar.
3. Connect modulating signal to these terminals. A positive voltage of 20 volts peak will blank the CRT trace from normal intensity.

Figure 2-9

ALIGNING SCOPE TRACE WITH GRATICULE

CAUTION: DANGEROUS VOLTAGES ARE

 PRESENT INSIDE THE INSTRUMENTRemove two screws at rear of dust cover and slide cover off to rear. Fiber lever (2) controls both radial and longitudinal positioning of CRT and is locked by clamp (1).

To align sweep trace with graticule loosen clamp (1) with a screwdriver. Rotate fiber arm (2) until the trace is parallel to horizontal lines on graticule. Tighten clamp (1) after adjustment has been made.

Figure 2-10

Figure 3-1. Model 130B Block Diagram

SECTION III THEORY OF OPERATION

3-1 GENERAL CONTENT

This section contains a brief description of the over-all operation of the Model 130B Oscilloscope, description of each major section and detailed description of a Schmitt trigger.

3-2 OVER-ALL OPERATION

The block diagram in Figure 3-1 shows the basic circuits of the Model 130B Oscilloscope.

A. VERTICAL AMPLIFIER

The Vertical Amplifier receives the input signal, amplifies it, and drives the vertical deflection plates of the cathode ray tube. In addition, this amplifier determines the vertical position of the spot on the screen and supplies a signal for synchronizing the sweep with the vertical input signal.

B. HORIZONTAL AMPLIFIER

The Horizontal Amplifier receives its signal either from the horizontal INPUT jack or from the Sweep Generator, amplifies it and drives the horizontal deflection plates of the cathode ray tube. Except for the provisions in the Horizontal Amplifier for amplifying the internally-generated sawtooth voltage, it is essentially the same as the Vertical Amplifier.

C. SWEEP GENERATOR

The Sweep Generator forms a sawtooth voltage to control the horizontal movement of the spot across the face of the cathode ray tube. The Sweep Generator is divided into two parts: 1) a sawtooth generator, 2) a trigger generator, which starts the sawtooth. The trigger generator controls allow the operator to choose the point at which the sawtooth sweep begins.

In addition to forming the internal sweep of the oscilloscope, the Sweep Generator also supplies the required unblanking pulse which brightens the trace during each sweep.

D. CALIBRATOR

An internal square-wave calibrator, with a nominal frequency of 300 cps , is provided for setting the basic gain of the amplifiers. Turning either the VERT. or HORIZ. SENSITIVITY switches to CAL., turns on the calibrator supply voltage and connects its output to the appropriate amplifier.

E. CATHODE RAY TUBE

The cathode ray tube is a $5 A Q P$ - monoaccelerator type. It is normally supplied with a P1 phosphor screen but is available in the P7 and P11 phosphors also and P2 upon special order. All are electrically interchangeable and the tube is easily changed. The mono-accelerator anode makes possible a simple astigmatism adjustment which requires no resetting when adjusting the FOCUS or INTENSITY controls. The deflection plate terminals are connected through removable jumpers at the rear of the instrument so that direct connections to the plates can be made easily.

3-3 VERTICAL AMPLIFICATION CHANNEL

The vertical amplification channel consists of three parts: the AC-DC switch, the input attenuator, and the amplifier section proper.

A. AC - DC SWITCH

The signal comes into the input terminals and is fed to the AC-DC switch. For ac coupling, a capacitor is switched into the signal path. In the DC position, the signal goes directly to the input attenuator.

B. INPUT ATTENUATOR

The input attenuator is a sixteen position switch having fifteen calibrated ranges (1 MILLIVOLT/CM to 50 VOLTS/CM) and a calibrate position. When the switch is in the CAL. position, the input of the amplifier is directly connected to the output of the internal calibrator. On ranges less sensitive than 50 MILLIVOLTS/CM, singleended frequency-compensated attenuators are inserted ahead of the Vertical Amplifier. On the six most sensitive ranges, balanced-type attenuators are inserted between the second differential amplifier (V2) and the third differential amplifier (V3). On the six most sensitive ranges, balanced input signals may be applied to the input terminals after removing the jumper to the ground terminal. The sensitivity may be varied continuously between ranges by means of the VERNIER control.

C. VERTICAL AMPLIFIER

The Vertical Amplifier consists of four stages of balanced differential amplifiers* in cascade. The first stage (V1) has the VERT. DC BAL. adjustment (R10A, B) in its cathode circuit which adjusts the current division between the two halves of the stage. The second stage has a VERNIER control in the cathode circuit which varies the gain of the amplifier between ranges of the VERT. SENSITIVITY switch, and another dc balance adjustment (R20) is also provided. In the last three stages, neutralizing capacitors are used to cancel the coupling effects between the input and output of the amplifier arising from the inter-electrode capacitances. The output of the second stage is fed to the balanced attenuator of the VERT: SENSITIVITY switch. The output of the balanced attenuator is connected to the third balanced differential amplifier (V3). The third stage has two potentiometers in its cathode circuit, one controls the vertical position of the pattern (VERT. POS) and the other adjusts the basic gain of the Vertical Amplifier (R40, Gain Adj.). The fourth balanced differential amplifier (V4) is the output stage. The neon lamps in the grid-cathode circuit of V4 protect the tube when the Model 130B is first turned on. The output of V4 drives the vertical deflection plates of the cathode ray tube. In addition, synchronization signals are coupled from

[^0]the plates of V4 and coupled into the Sweep Generator to trigger the sweep during either INTERNAL + or INTERNAL - synchronization. As a precaution against drift and hum, a regulated dc supply is used for the heaters of the first three stages.

3-4 HORIZONTAL AMPLIFICATION CHANNEL

The Horizontal Amplifier is essentially identical to the Vertical Amplifier, except in the INT. SWEEP X1 and X5 position of the HORIZ. SENSITIVITY switch. In these positions, the sawtooth signal from the Sweep Generator is fed through the sweep attenuator to the grid of V103, the third balanced differential amplifier. In the INT. X5 position, R164, X5 Mag. Adj., in the cathode circuit of V104 sets the gain of the amplifier to obtain sweep magnification of X5. The output of V104 drives the horizontal deflection plates of the cathode ray tube.

3-5 SWEEP GENERATOR

The sweep generator provides a sawtooth voltage to produce linear horizontal movement of the spot across the face of the cathode ray tube when the HORIZ. SENSITIVITY switch is set to INT. SWEEP (X1 or X5). In addition, the sweep generator furnishes the pulse required to unblank the cathode ray tube during each sweep.

The sweep generator consists of a Trigger Generator, a Sawtooth Generator, and a Gate Out Cathode Follower.

A. TRIGGER GENERATOR

The purpose of the Trigger Generator is to receive a synchronizing signal and convert it into a fast, constant-amplitude pulse to start the Sawtooth Generator.

The Trigger Generator consists of a SYNC selector switch (S201), a Trigger Amplifier (V201), and a Trigger Generator (V202). The SYNC selector switch accepts a signal from:
I) the Vertical Amplifier (internal synchronization, + or -),
2) an internal 6.3 volt source (line-frequency synchronization), or
3) the horizontal INPUT terminals (external synchronization).

The synchronizing signal is fed to V201 which amplifies the signal and delivers it in the proper phase, as selected by the TRIGGER SLOPE switch, to the Trigger Generator. Adjustment of the TRIGGER LEVEL control sets the output level of V201, determining the point on the input waveform that will trigger the Trigger Generator (V202). Trigger Generator (V202) is a Schmitt trigger circuit; a discussion of the Schmitt trigger follows:

A Schmitt trigger consists of two amplifiers, A and B , having both plate-to-grid and cathode-tocathode coupling. The circuit has two stable states: A side conducting, B side cut off; B side conducting, A side cut off. Due to regenerative action the change-over from one state to the other is very rapid, producing fast rise and decay times in the square-wave output. The levels at which the change-over takes place (hysteresis limits) can be adjusted to be close together as in the Trigger Generator (V202) or widely spaced as in the Start-Stop Trigger (V203). To trigger the circuit, the A side grid voltage must cross a particular hysteresis limit to change the state of the circuit. For example, if the A side is conducting, driving the grid voltage positive through the upper hysteresis limit will have no effect, but driving the grid voltage negative through the lower hysteresis limit will put the A side out of conduction and B side into conduction.

B. SAWTOOTH GENERATOR

The Sawtooth Generator consists of StartStop Trigger (V203), and Integrator Switch '(V205), a Feedback Integrator (V206B), and Integrator Cathode Follower (V206A), and a Retriggering Hold-Off Cathode Follower (V207B).

Start-Stop Trigger (V203), a Schmitt trigger circuit, is fed by Trigger Generator (V202). The square wave output of V203 is fed directly to the Integrator Switch (V205), which in turn controls the action of Feedback Integrator (V206B). When V203 produces a negative pulse, it causes V205 to cut off permitting V206B to commence operation.

Feedback Integrator (V206B), a Miller integrator circuit*, generates essentially a positive linearly rising waveform, which is applied to the Horizontal Amplifier to sweep the trace across the face

[^1]of the cathode ray tube. The rate at which this sweep takes place is determined by the values of the RC network in the grid circuit of V206B. These values are varied by the SWEEP TIME switch. The output of V206B is fed through a neon lamp (I 203) to the Integrator Cathode Follower (V206A). I203 is shunted with a capacitor to improve the high-frequency response of the circuit, and a series resistor is used to eliminate any tendency toward oscillation. I204 through I206 are protective neons for the timing capacitor in the sweep time switch.

The output of the Integrator Cathode Follower (V206A) is fed to two circuits: 1) through the sweep attenuator to the Horizontal Amplifier and 2) to the Retriggering Hold-Off Cathode Follower (V207B) in the Sawtooth Generator feedback circuit. During the Sweep, V207B conducts and the capacitor in its cathode circuit charges. However, at the termination of the sweep, V207B is cut off and the cathode capacitor discharges, maintaining a positive bias on the grid of V203A. This hold-off bias allows sufficient time between sweeps for the Sweep Generator to recover. The bias which determines the triggering level of the Start-Stop Trigger (V203A) is supplied by the Retriggering Bias Control (V207A). The bias is adjusted by the SWEEP MODE control, R218, in the grid circuit of V207A.

C. GATE OUT CATHODE FOLLOWER

Another function of the Start-Stop Trigger is to furnish a pulse to unblank the cathode ray tube. The Gate Out Cathode Follower (V204), couples the required positive unblanking pulse from the Start-Stop Trigger to the grid of the crt for the duration of the sweep.

3-6 LOW VOLTAGE POWER SUPPLY

The low-voltage power supply consists of four regulated voltage supplies, three positive (+585 V , $+300 \mathrm{~V},+100 \mathrm{~V})$ and one negative $(-150 \mathrm{~V})$, furnishing the plate voltages and dc filament voltages required for the instrument.

The operation of each of the four regulators is similar; only the -150 volt supply will be discussed. V306, V307 and V308 constitute the voltage regulator circuit for the -150 volt supply. V308, a glow discharge tube, probides a reference voltage for the cathode of V307, the

Control Tube. V306, a Series Regulator, is controlled by the voltage at the plate of V307. If the output voltage from the rectifier increases, the bias of V307 decreases, causing V307 to draw more current. This lowers the plate voltage of V307 and the grid voltage of V306, resulting in greater plate resistance for V306. Increased plate resistance causes a greater voltage drop across V306, compensating for the increased output voltage from the rectifier and resulting in substantially constant output.

If the output voltage from the rectifier decreases, the reverse of the above action occurs. Changes in supply voltage due to changes in load current are minimized in the same manner. Thus, the output voltage is held essentially constant. The output of the -150 volt supply serves as the reference voltage for the three positive-voltage supplies.

3-7 HIGH-VOLTAGE POWER SUPPLY

The high-voltage power supply provides regulated dc voltage to the cathode and control grid of the cathode ray tube. The high-voltage power supply consists of an RF Oscillator tube (V313), a highvoltage transformer (T302), high-voltage rectifiers (V310,311) and a High-Voltage Control Tube (V312). The RF Oscillator, a Hartley circuit, oscillates at a frequency of approximately 100 kc . The high-voltage transformer has two separate secondaries which feed the High-Voltage Rectifiers.

The output of V310 is connected to the cathode of the cathode ray tube. A fraction of this voltage is fed to the High-Voltage Control Tube V312, a dc-coupled amplifier. The output of V312 is fed back to the screen of RF Oscillator tube (V313) in proper phase to oppose any change in the highvoltage output. The INTENSITY control in the output of this supply determines the voltage on the cathode of the cathode ray tube.

The output of V311 is connected to the control grid of the cathode ray tube, and normally the crt beam is cut off. During the sweep operation, a positive
pulse from the Gate Out Cathode Follower (V204) in the Sweep Generator circuit overrides the negative crt grid cutoff voltage and unblanks the cathode ray tube. The brilliance of the trace may be adjusted with the Intensity Adjust potentiometer (R343), in series with grid-voltage supply.

3-8 CALIBRATOR

The Calibrator, a square-wave oscillator, produces an accurate voltage across R244 for application to either amplifier for setting the basic gain. Turning either the VERT. or HORIZ. SENSITIVITY switches to CAL. turns on the Calibrator and connects its output to the appropriate amplifier.

The Calibrator consists of two neon lamps (I 207 and I 208) in a relaxation oscillator circuit. Operation of the Calibrator is as follows:

When the +300 volt supply is applied to the Calibrator, I 207 will ionize first due to higher potential across it compared to the potential across I 208. When I 207 fires it will draw current through R243. However, the voltage at the junction of R242, C213 and R243 will build up slowly because the voltage across a capacitor cannot change instantaneously. As C213 allows this voltage to change, the voltage at the common junction of I 207 and I 208 will also change, since the voltage drop across the ionized neon lamp is constant (approximately 60 volts). As the voltage at the common junction of I 207 and I 208 reaches approximately +70 volts, I 208 will fire. This additional current through R240 and R241 will reduce the voltage across I 207 and it will de-ionize. I 208 remains lit until the voltage across C213 charges through R243 to a voltage approximately 70 volts below the voltage that appears at the common junction of I 207 and I 208. I 207 will now fire and the action will repeat itself.

I 208 is thus alternately turned off and on at a rate of approximately 300 cps . The output of the Calibrator is taken from the current passing through R244 and I 208. The output is approximately a square wave which can be set with R240 to obtain 300 millivolts in amplitude.

SECTION IV MAINTENANCE

4-1 INTRODUCTION

This' section contains instructions for testing, adjusting, and trouble shooting the Model 130B Oscilloscope.

Standard, readily available components are used for manufacture of (4p) instruments whenever possible. Special components are available through your local (bp Representative who maintains a part stock for your convenience.

When ordering parts, specify instrument model and serial number plus the component description and stock number appearing in the Table of Replaceable Parts.

Your local (tpp Representative maintains complete facilities and specially trained personnel to assist you with any problems you may have with (ip) instruments.

The material in this section is divided according to circuit functions, each section having a complete set of adjustment instructions. The material in this section is as follows:

4-2 Simple Check Procedure
4-3 Removing the Cabinet
4-4 Isolating Troubles to Major Sections
4-5 Connecting for 230 Volt Operation
4-6 Tube Replacement
4-7 Condensed Test and Adjustment Procedure
4-8 Adjustment Procedure
4-9 Turn On
4-10 Power Supplies
4-11 Replacing and Adjusting the CRT
4-12 Checking and Adjusting the Calibrator
4-13 Adjusting the Vertical Amplifier
4-14 Adjusting the Horizontal Amplifier
4-15 Phase Shift Adjust
4-16 Adjusting Preset
4-17 Adjusting the Sawtooth Generator and Sweep Amplifier

The following test equipment is used for testing and adjusting the Model 130B Oscilloscope during manufacture. Equivalent test equipment may be used.

1) A high impedance dc vacuum tube voltmeter, such as an (ip) Model 410B with an (40) Model 459A DC Voltage Multiplier.
2) A high impedance ac vacuum tube voltmeter, such as an (tp Model 400D/H/L.
3) A variable power line transformer with a minimum rating of 3 amps .
4) A square-wave generator such as an (4p) Model 211A.
5) A sine-wave oscillator with a maximum frequency of at least 500,000 cycles, such as an (5) Model 200CD.
6) An accurate time mark generator suitable for sweep speed calibration.

4-2 SIMPLE CHECK PROCEDURE

This check should be performed first whenever instrument malfunction is suspected. It is not necessary to remove the instrument from the cabinet.

Set both VERT. and HORIZ. SENSITIVITY switches on CAL. The pattern should be a straight line tilted at 45 degrees. In addition, the deflection should be a total of six centimeters in the horizontal and vertical directions.

If the proper pattern is obtained, it is likely that both the Vertical and Horizontal Amplifier, the Power Supplies and the Calibrator are functioning properly. To check the Sweep Generator proceed as follows:

Figure 4-1. Location Diagram for Major Circuits

1) Leaving the VERT. SENSITIVITY switch in CAL, switch HORIZ. SENSITIVITY switch to INT. SWEEP X1.
2) Switch SWEEP TIME/CM switch to 1 MILLISECOND. A six centimeter square-wave pattern should appear on the screen. If no pattern is obtained be sure SWEEP MODE is in PRESET, SYNC switch is in INT., and adjust TRIGGER LEVEL to trigger. If a pattern cannot be obtained, the malfunction is most likely in the Sweep Generator.

4-3 REMOVING THE CABINET

In the cabinet model, remove the two screws at the rear of the cabinet, and push the instrument forward.

If the 130 BR has been rack-mounted with brackets as described in Figure 1-3, remove the screws which pass through the front panel, and withdraw the chassis. If the instrument is out of the rack, turn it on its face (handles will protect the controls), remove the two screws at the rear, and lift off the dust cover.

4-4 ISOLATING TROUBLES TO MAJOR SECTIONS

Determining which major section contains a malfunction is usually not a difficult process, if the following general rules are remembered.

1) A failure affecting all major sections can usually be traced to the power supply.
2) A failure occurring in the last two stages of the Horizontal Amplifier also will affect internally generated sweeps, while a failure in the first two stages affects only the Horizontal Amplifier.
3) A sweep Generator failure affects internally generated sweeps only, and does not affect the Horizontal Amplifier.
4) If following the Simple Check Procedure does not produce a trace or spot on the screen, measure the voltages on the deflection plates of the Cathode-Ray Tube (deflection plate terminal board is a convenient place to measure). If, with both VERT. and HORIZ. SENSITIVITY switches set to 50 MILLIVOLTS/CM, these voltages can be set to approximately 480 vdc using the position controls, look for trouble in the high voltage section of the power supplies. If one set of deflection
plates has unbalanced voltages, or if the position control must be turned far from its mechanical center to balance these voltages, look for trouble in that amplifier. If both sets of deflection plates have unusual voltages, look for trouble in the power supply.
5) If the series heater string should open, all major sections will be inoperative.
6) The two sides of the direct-coupled differential amplifier, such as are used in the Vertical and Horizontal Amplifiers on the 130B, are balanced and, unless a signal is present, the spot will be motionless in the center of the screen. Any signal, whether this signal is applied to the input terminals or is supplied by an internal source, such as a positioning or balance control, causes the spot to move from the center of the screen. As the instrument ages it is to be expected that a drift will occur which must be compensated by internal adjustments. However, should there be a component failure in either amplifier the spot will be thrown off the screen and usually out of range of adjustment of the balance and positioning controls. To isolate the trouble, begin by shorting together the grids of the amplifier closest to the output. If the trace (spot) returns to the screen, the fault is ahead of this stage. Proceed towards the front of the amplifier. If shorting the grids of one stage does not return the spot to the screen, the fault is in this stage, or if there is a balancing control in this stage, it may be out of adjustment.
7) To check the Sweep Generator quickly, set the SWEEP TIME/CM switch to 5 or 10 MILLISECONDS/CM, turn the SWEEP MODE control to FREE RUN, and observe I 201, I 202 and I 203. These are the three neon lamps near V206 (6AW8) on the Sweep Generator etched circuit board. If these lamps flicker regularly, the Sweep Generator is sweeping. Turning the SWEEP MODE into the TRIGGER region should stop the generation of sweeps and, hence, the flickering of the neon lamps.

4-5 CONNECTING FOR 230 VOLT OPERATION

Unless otherwise requested by the customer, (4D) instruments are shipped with their power transformer primaries connected in parallel for operation on 115 volt (nominal) power lines.

To convert to 230 volt supply, remove the instrument from its cabinet or dust cover by removing the two screws at the rear of the chassis, and
push the chassis forward. At the primary of the power transformer (marked A), remove the wires connecting terminals 2 and 5 , and 1 and 4 . Then connect 1 to 2 as shown in Figure 4-2, and replace the 2 amp slow-blow fuse (F301) with a $1-1 / 4$ amp slow-blow fuse. The instrument may now be connected to the 230 volt line.

Figure 4-2. Line Voltage Connection

4-6 TUBE REPLACEMENT

In many cases instrument malfunction can be corrected by replacing a weak or defective tube. Before changing the setting of any internal adjust-
ment, check the tubes. Adjustments made in an attempt to compensate for a defective tube will often complicate the repair problem.

It is a good practice to check tubes by substitution rather than by using a "tube checker". The results obtained from the 'tube checker"' can be misleading. Before removing a tube, mark it so that if the tube is good it can be returned to the same socket. Replace only tubes proved to be weak or defective.

Any tube with corresponding standard EIA (JEDEC) characteristics can be used as a replacement. Where variation in tube characteristics will affect circuit performance, an adjustment is provided. The following table lists the tests and adjustments which should be performed if such tubes are replaced.

The chart in Table 4-2 lists all tubes in the 130B with their functions and adjustments required when replacing tubes. The heaters of some tubes are operated in series from a regulated dc voltage obtained from the Low-Voltage Power Supply. These tubes are identified in the chart with an asterisk and their heaters are shown in the Filament and Primary Detail Schematic. If a tube in the dc string is pulled or burned out, all tubes in the string will be turned off.

4-7 CONDENSED TEST AND ADJUSTMENT PROCEDURE

All basic tests and adjustments are covered in the following Table 4-1. In most cases, this table will cover all normal adjustment needs for the oscilloscope. For a more complete and de-
tailed test procedure refer to paragraph 4-8.
If the instrument is not operating, refer to paragraphs 4-3 and 4-6.

If a tube is replaced, refer to Table 4-2 and complete the indicated adjustments.

TABLE 4-1. CONDENSED TEST AND ADJUSTMENT PROCEDURE

Test	External Equipment Required	Procedure	Adjust	Notes
1. Low Voltage Power Supply	DC vtvm with 1\% accuracy	Measure all low voltage power supply outputs should be within the following limits:	If voltages are outside limits, adjust R332 for -150 volts.	Check sweep calibration if -150 V is adjusted.
2. Vertical amplifier balance	NONE	HOR.SENS. to INT.SWEEP X1, SWEEP MODE to free-run, SYNC to INT., SWEEP TIME to $1.0 \mathrm{~ms} / \mathrm{cm}$, short-circuit input terminals and set INPUT for DC. VERT. SENS, and Vernier to Cal.	Center bottom of calibrating signal with VERT.POS. control	Repeat as required.
		VERT.SENS. to $1 \mathrm{mv} / \mathrm{cm}$, Center VERT.DC.BAL control (knob).	Center trace with coarse balance control. (Screw adjustment in center of DC BAL control.)	
3. Vertical VERNIER balance	NONE	Short circuit input terminals and set INPUT for DC. VERT.SENS. to $1 \mathrm{mv} / \mathrm{cm}$, VERNIER to Cal.	Center spot (or trace) with VERT. POS. control.	Repeat as required.
		VERNIER fully CCW	Return spot to center with R20	
4. Vertical amplifier gain	400 cycle Voltage Calibration Generator	VERT.SENS. to $50 \mathrm{mv} / \mathrm{cm}$. VERNIER to Cal. Connect 300 mv p-p from Calibration Generator to vertical input.	Adjust R40 for 6 cm deflection.	
	Square Wave Generator	Connect 50 kc square wave to Vert. Input. Adjust square wave generator for 6 cm deflection. SYNC to INT, Adjust SWEEP MODE and TRIGGER LEVEL for stable picture.	Adjust C12 for best square wave.	
5. Calibrator	NONE	VERT.SENS. and VERNIER to CAL, SWEEP MODE to freerun; SWEEP TIME to $1 \mathrm{~ms} / \mathrm{cm}$.	Adjust R240 for 6 cm deflection.	
6. Horizontal amplifier balance	NONE	Short-circuit input terminals and set INPUT for DC. VERT.SENS. to $50 \mathrm{mv} / \mathrm{cm}$, with no input. HOR.SENS. and VERNIER to CAL.	Center the left spot with the HOR.POS. control.	Repeat as required.
		HOR.SENS. to $1 \mathrm{mv} / \mathrm{cm}$, Center the HOR.DC BAL control (knob).	Center the spot with the coarse balance control (screw driver adjustment in center of DC BAL control).	
7. Horizontal VERNIER balance	NONE	Short-circuit input terminals and set INPUT for DC. HOR.SENS. to $1 \mathrm{mv} / \mathrm{cm}$, VERNIER to CAL.	Center spot with POS. control HORIZ.	Repeat as required.
		VERNIER fully CCW.	Return spot to center with R120.	
8. Horizontal amplifier gain	NONE	HOR.SENS. and VERNIER to CAL.	Adjust R144 for 6 cm between spots.	
	Square wave generator	HOR.SENS. to $50 \mathrm{mv} / \mathrm{cm}$, Connect 50 kc square wave to Hor. input and adjust for 6 cm deflection.	Adjust C114 for best defined spots.	
9. Sweep gain	Time Marker Generator	HOR.SENS. to INT.SWEEP X1 SWEEP TIME to $1 \mathrm{~ms} / \mathrm{cm}$, VERNIER to CAL; 1 kc markers from generator to VERT. input. SYNC to INT. Adjust SWEEP MODE and TRIG.LEVEL for stable pattern.	Adjust R134 for one marker/cm	
		HOR.SENS. to INT.SWEEP X5.	Adjust R164 for markers 5 cm apart.	
10. Sweep preset	DC VTVM	HOR.SENS. to INT.SWEEP X1. SWEEP TIME to $1 \mathrm{~ms} / \mathrm{cm}$, SWEEP MODE to PRE-SET, SYNC to EXT. with no input. Connect VTVM 30 volt range between center arm of Preset pot (R220) and ground.	Slowly adjust R220 and note voltage just prior to sweep start. Adjust pre-set for 2 volts more positive than voltage noted.	
11. Sweep length	Sine Wave Oscillator	HOR.SENS. to INT.SWEEP X1. SWEEP TIME to $1 \mathrm{~ms} / \mathrm{cm}$. SYNC to INT. Connect 500 kc sine wave to vertical input. Adjust level and VERT SENS. to produce 6 cm vertical deflection.	Adjust R229 for a trace about 10.5 cm long.	

TABLE 4-2. TUBE REPLACEMENT CHART

Ref.	Tube	Function	Adjustment
		VERTICAL AMPLIFIER	
V1*	12AU7 \ddagger	Phase Inverter Amplifier	Vertical Amplifier (par. 4-13A/B)
V2*	12AU7	Differential Amplifier	Vertical Amplifier (par. 4-13A/B)
V3*	12AT7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
V4*	6DJ8/6BQ7	Differential Amplifier	Vertical Amplifier (par. 4-13B)
		HORIZONTAL AMPLIFIER	
V101*	12AU7 \ddagger	Phase Inverter Amplifier	Horizontal Amplifier (par. 4-14A/B)
V102*	12AU7	Differential Amplifier	Horizontal Amplifier (par. 4-14A/B)
V103*	12AT7	Differential Amplifier	Horizontal Amplifier (par. 4-14B)
V104*	6DJ8/6BQ7	Differential Amplifier	Sawtooth Generator (par. 4-17)
		SWEEP GENERATOR	
V201*	6DJ8/6BQ7A	Trigger Amplifier	none
V202	12AT7	Trigger Generator	none
V203	6U8	Sweep Start-Stop Trigger	Adj. Preset, Sweep Length (par. 4-16 and 17, Step.17)
V204	6C4	Gate Out Cathode Follower	none
V205*	12AL5	a. Integrator Switch b. Integrator Switch	none
V206	6AW8	a. Integrator Cathode Follower b. Feedback Integrator	none
V207	12AX7	a. Retriggering Hold Off b. Retriggering Bias Control	none
		POWER SUPPLY	
V301	12B4	+300-volt Series Regulator	none
V302	6AU6	+300-volt Control Tube	none
V303	12B4	+100-volt Series Regulator	none
V304*	6BH6	+100-volt Control Tube	none
V305	6X4	-150-volt Rectifier	none
V306	12B4	-150-volt Series Regulator	none
V307*	6BH6	-150-volt Control Tube	none
V308	5651	Reference Tube	LV Supply (par. 4-10A)
V309	5AQP	CRT	Adj.Vert.\& Horiz.Gain (par.4-13,4-14)
V310	1V2	High Voltage Rectifier	none
V311	1V2	High Voltage Rectifier	none
V312	12AU7	High Voltage Control Tube	none
V313	6AQ5	RF Oscillator	none
V314	6DJ8/6BQ7A	a. $+585-$ volt Series Regulator b. +585 -volt Control Tube	none none
* Series dc heater		\ddagger Tested part - See Table of Replaceable Parts	

HIGH VOLTAGE BOARD

Figure 4-3. Power Supply Location Diagram

4-8 ADJUSTMENT PROCEDURE

Usually a particular oscilloscope will not need complete testing and calibration. Only one or two tests will be needed and they can be done without completing the entire test procedure.

The following procedures are listed in a recommended sequence for a complete test and calibration operation. In general, tubes are the main cause of trouble and new ones should be tried before making adjustments or other component replacements.

Specifications for the Model 130B Oscilloscope are given in the front of this manual. The following test procedures contain extra checks to help you analyze a particular instrument. These extra checks and the data they contain can not be considered as specifications.

A fifteen minute warm-up and power supply output voltage measurements are always recommended before making any other test or adjustment.

4-9 TURN ON

When turning the oscilloscope on for the first time after repair in any circuit, measure resistance from power supplies to ground. They usually will be within 25% of the following:

+100 volt supply	110 ohms
-150	50,000 ohms
+300	9,000 ohms
+585	85,000 ohms

CAUTION

When first turning an oscilloscope on after power supply repairs, turn the intensity and both positioning controls full counterclockwise before applying power. Failure to follow this precaution can cause permanent cathode-ray tube damage.

4-10 POWER SUPPLIES

The power supplies in the oscilloscope are extremely stable and will require infrequent adjustment. The output voltages should be measured at regular intervals but unnecessary adjustments should be avoided.

Power supply voltages may be measured at the points indicated in Figure 4-3.

To adjust the power supply section, refer to Figure 4-3, and proceed as follows:

A. LOW VOLTAGE SUPPLY

1) Turn sweep generator off by turning the HOR. SENS. switch to 50 volt/cm position.
2) Permit the 130 B to warm up for at least five minutes at a line voltage of $115 / 230$ volts.
3) Measure power supply voltages with line volts set to 115 volts. The voltages will normally be within the limits given in Table 4-3. Control R332 can be adjusted if necessary to set the +100 volt supply within limits.

If adjustment of the +100 volt supply was necessary, all sweep timing, calibrator and gain adjustments must be checked.

If poor low voltage supply regulation is suspected, the following check may be made:
-- Check the regulation of each power supply voltage as the power line voltage is varied between 103 and 127 volts. All regulated voltages should remain within $\pm 1 \%$ over this range of line voltage.
-- Measure the ac ripple on each supply voltage. This ac voltage should not exceed the amount specified in Table 4-3.

TABLE 4-3. REGULATED POWER SUPPLY TOLERANCES

$\left.$| | Tolerance
 $(115 / 230$
 volt line) | Variation $\pm 10 \%$
 line voltage
 change | |
| :--- | :---: | :---: | :---: | | Nominal |
| :---: |
| Ripple at |
| $115 / 230 \mathrm{~V}$ | \right\rvert\,

If any output does not regulate or has excessive ripple, replace the Series Regulator Tube or the Control Tube of that supply. It must be kept in mind, however, that loss of regulation of the $\mathbf{- 1 5 0}$ volts will cause the other supplies to lose regulation, and that loss of regulation of the +100 volts will cause the +585 volt and +300 volt supplies to lose regulation also.

SERVICING ETCHED CIRCUIT BOARDS

Excessive heat or pressure can lift the copper strip from the board. Avoid damage by using a low power soldering iron (50 watts maximum) and following these instructions. Copper that lifts off the board should be cemented in place with a quick drying acetate base cement having good electrical insulating properties.

A break in the copper should be repaired by soldering a short length of tinned copper wire across the break.
Use only high quality rosin core solder when repairing etched circuit boards. NEVER USE PASTE FLUX. After soldering, clean off any excess flux and coat the repaired area with a high quality electrical varnish or lacquer.

When replacing components with multiple mounting pins such as tube sockets, electrolytic capacitors, and potentiometers, it will be necessary to lift each pin slightly, working around the components several times until it is free.

WARNING: If the specific instructions outlined in the steps below regarding etched circuit boards without eyelets are not followed, extensive damage to the etched circuit board will result.

1. Apply heat sparingly to lead of component to be replaced. If lead of component passes through an eyelet in the circuit board, apply heat on component side of board. If lead of component does not pass through an eyelet, apply heat to conductor side of board.

2. Bend clean tinned leads on, new part and carefully insert through eyelets or holes in board.

3. Reheat solder in vacant eyelet and quickly insert a small awl to clean inside of hole. If hole does not have an eyelet, insert awl or a \#57 drill from conductor side of board.

4. Hold part against board (avoid overheating) and solder leads. Apply heat to component leads on correct side of board as explained in step 1.

In the event that either the circuit board has been damaged or the conventional method is impractical, use method shown below. This is especially applicable for circuit boards without eyelets.

1. Clip lead as shown below.

2. Bend protruding leads upward. Bend lead of new component around protruding lead. Apply solder using a pair of long nose pliers as a heat sink.

This procedure is used in the field only as an alternate means of repair. It is not used within the factory.

Figure 4-4. Servicing Etched Circuit Boards

B. HIGH VOLTAGE SUPPLY

1) The -2550 volt output is measured on the resistor board under the base of the crt. Connect an appropriate dc voltmeter (such as an (bp) Model 410B VTVM with an (4p) Model 459A DC Resistive Voltage Multiplier) to the Junction of R338, C312 (marked -2550 CATH. on cover).
2) With the line at $115 / 230$ volts the high voltage should measure $-2550 \pm 4 \%$. Control R334 can be adjusted if necessary to set the -2550 volt supply within limits.

If poor -2550 voltage supply regulation is suspected the following check may be made:
-- Check the regulation by varying the line voltage between 103 and 127 volts. The -2550 should remain within $\pm 1 \%$ over this range of line voltage. If the -2550 supply does not regulate check the control tube V312.
3) Set SWEEP TIME/CM to 5 MILLISECONDS.
4) Set HOR. SENS. to INT. SWEEP X1.
5) Set SWEEP MODE fully clockwise to FREE RUN.
6) Set INTENSITY control to 10 o'clock.
7) Set Int. Adj., R343, until the trace is just visible.
8) Set SWEEP MODE fully counterclockwise to PRESET.
9) Set INTENSITY control for a low intensity spot.
10) Center spot and adjust FOCUS control and ASTIGMATISM (R303) to obtain a small round and sharply focused spot.

4-11 REPLACING AND ADJUSTING THE CRT

To replace the cathode-ray tube, refer to Figure $2-10$, and proceed as follows:

1) Turn off and remove the 130 B from the cabinet.
2) Loosen the clamp on the crt socket. (Cabinet model; remove cover from High Voltage terminal board to get access for screwdriver through board).
3) Remove the front-panel bezel.
4) With a screwdriver loosen the crt base from socket. Free the crt from the socket by pressing on the center of the tube base with one hand while supporting the front of the crt with the other.
DANGER - Do not apply force on neck of tube.
5) Remove the crt through the front panel.

CAUTION - HANDLE THE CATHODE RAY TUBE CAREFULLY.

6) Insert the replacement crt through the front panel and seat in socket.
7) Replace front-panel bezel.
8) Adjust the socket assembly so that the face of the crt just misses the bezel assembly. Tighten the clamp just enough to hold the crt in place loosely.

NOTE

Turn the INTENSITY control to minimum when first applying power to a crt. The phosphor can be damaged quickly by too much brightness.
9) Set the INTENSITY control fully counterclockwise. Turn the 130 B on and allow to warm up.
10) Set the SWEEP MODE control to FREE RUN.
11) Adjust the INTENSITY control to obtain a weak trace; adjust the FOCUS control for a sharp trace, and with the vertical position control, center the trace vertically.
12) Align trace with graticule using the alignment handle at rear of crt.
CAUTION - Do not over-tighten crt clamp or tube damage may result.
13) Making certain the crt face is close to but not touching the bezel assembly, tighten the clamp on the crt socket only enough to hold the crt from turning. If the face of the tube touches the bezel assembly, Newton rings may be visible.
14) Readjust the astigmatism; see paragraph 4-10B.
15) Check the gain calibration of the Vertical and Horizontal Amplifiers by setting the VERTICAL and HORIZONTAL SENSITIVITY selectors to CAL, and if necessary, adjusting R40 (Figure 4-5) to obtain 6 cm vertical deflection and R144 (Figure $4-6$) to obtain 6 cm horizontal deflection on the trace; see paragraph 4-13B and 4-14B.

Figure 4-5. Vertical Amplifier Adjustment Location

Figure 1-3. Model 130BR Installation

4-12 CHECKING AND ADJUSTING THE CALIBRATOR

1) Set HORIZ. SENSITIVITY to INT. SWEEP X1; SWEEP TIME/CM to 1 MILLISECOND; SWEEP MODE to PRESET; SYNC. to INT.; and TRIGGER LEVEL to " 0 "'.

NOTE

If PRESET (SWEEP MODE) is maladjusted, you may not obtain a trace. See paragraph 4-16.
\qquad
2) Set the VERT. SENSITIVITY switch to 50 MILLIVOLTS/CM. Place the VERNIER control in CAL.
3) Connect the signal source to the vertical IN PUT terminals and set its rms output voltage, read on the vtvm, to 106 millivolts (300 mv / $2 \sqrt{2}$) and its output frequency to 1000 cps .
4) Adjust R40 (see Figure 4-5) to obtain exactly 6 centimeters deflection.
5) Set the VERT. SENSITIVITY switch to CAL.
6) Adjust the R240 (see Figure 4-7) for exactly 6 centimeters deflection.

4-13 ADJUSTING THE VERTICAL AMPLIFIER

The following adjustments are located in the vicinity of the Vertical Amplifier or the VERT. SENSITIVITY switch as shown in Figure 4-5.

A. VERNIER BALANCE ADJUSTMENT

To adjust VERNIER balance, allow the instrument to warm up 15 minutes and adjust Vertical balance as shown by Figure 2-2. Then refer to Figure 4-5 and proceed as follows:

1) Short the INPUT terminals and set the INPUT switch to DC.
2) Set VERT. SENSITIVITY to 1 MILLIVOLT/CM, and VERNIER to CAL.
3) Center spot (or trace) with VERT. POS. control.
4) Turn VERNIER fully counterclockwise and return spot to center with R20, the Bal. Adj.

The trace should now be stationary as the VERNIER is rotated.

B. VERT. AMPL. GAIN AND FREQ. RESP. ADJUSTMENTS

To adjust the Vertical Amplifier gain and frequency response refer to Figure $4-5$ and proceed as follows:

1) Adjust Vertical and VERNIER balance as indicated by Figure 2-2 and paragraph 4-13A.
2) Set HORIZ. SENSITIVITY to INT. SWEEP X1 and set the SWEEP TIME/CM switch to 2 MILLISECONDS, SWEEP MODE to PRESET and TRIGGER LEVEL to " 0 ".
3) Place VERTICAL SENSITIVITY switch and its VERNIER in CAL.
4) Adjust R40 for exactly 6 centimeters deflection.
5) Set VERT. SENSITIVITY to 50 MILLIVOLTS/ CM. Set SYNC to INT.
6) Set SWEEP TIME/CM switch to 5 MICROSECONDS.
7) Connect a 50 kc square wave to the Vertical INPUT and adjust the square-wave amplitude for 6 to 8 centimeters deflection.
8) Adjust C 12 for best square wave. To give C12 a range of adjustment sufficient to compensate for variations of tube characteristics, C13 may be connected in parallel with C 12 to increase the maximum capacity to $1340 \mu \mu \mathrm{f}$.

C. INPUT ATTENUATOR FREQUENCY RESPONSE ADJUSTMENTS

To adjust frequency response of the input attenuator refer to Figure 4-5 and proceed as follows:

1) Connect a 5 kc square wave to the Vertical INPUT.
2) Set SWEEP TIME/CM to obtain 3 or 4 cycles of the square wave.
3) Make the indicated adjustment for best squarewave presentation on the following ranges:

VOLT/CM	
10	
1	ADJUST
.1	C4
	C3

FRONT PANEL

Figure 4-6. Horizontal Amplifier Adjustment Locations

4-14 ADJUSTING HORIZONTAL AMPLIFIER

To adjust the Horizontal Amplifier, refer to Figure 4-6 and proceed as follows:

A. VERNIER BALANCE ADJUSTMENT

To adjust the VERNIER balance allow the instrument to warm up thoroughly and adjust Horizontal balance as shown by Figure 2-3; then refer to Figure 4-6 and:

1) Short the INPUT terminals and set the INPUT switch to DC.
2) Set the HORIZ. SENSITIVITY to 1 MILLIVOLT/CM and the VERNIER to CAL.
3) Center the spot with the HORIZ. POS. control.
4) Turn the VERNIER completely counterclockwise and return the spot to the center with R120, Bal. Adj. The spot will now be stationary as the VERNIER is rotated.

B. AMPLIFIER GAIN AND FREQUENCY RESPONSE ADJUSTMENTS

To adjust the gain and frequency response, refer to Figure 4-6 and proceed as follows:

1) Set HORIZ. SENSITIVITY switch to CAL. and the VERNIER to CAL.
2) Adjust R144 for exactly 6 centimeters deflection.
3) Set VERT. SENSITIVITY to 2 VOLTS/CM.
4) Connect an 8 kc (approximately) sine wave to the Vertical INPUT of the oscilloscope and to the SYNC. IN terminal of the 211A square wave generator; adjust the sine wave for 10 cm deflection.
5) Set HORIZ. SENSITIVITY to 50 MILLIVOLTS/CM.
6) Connect a 50 kc square wave to the Horizontal INPUT, and adjust the square wave amplitude for 6 to 8 cm deflection.
7) Adjust C114 for best square wave response.

NOTE

Some vacuum tubes require more capacity for compensation than the maximum value of C114.

Capacitor C115 may be connected in parallel with C114 to increase the maximum capacity to $1340 \mu \mu \mathrm{f}$, permitting a greater percentage of vacuum tubes to be used.

C. INPUT ATTENUATOR FREQUENCY RESPONSE ADJUSTMENTS

To adjust the frequency response at the input attenuator, refer to Figure 4-6 and proceed as follows:

1) Set VERT. SENSITIVITY to 2 VOLTS/CM.
2) Connect an 800 cps (approximately) sine wave to the Vertical INPUT of the oscilloscope and to the Sync-In terminal of the 211 A square wave generator; adjust the sine wave for 10 centimeter deflection.
3) Set HORIZ. SENSITIVITY to 10 VOLTS/CM (VERNIER in CAL.).
4) Connect a 5 kc square wave to the Horizontal INPUT and adjust its amplitude for 6 centimeter deflection.
5) Make the following adjustments on the ranges indicated for the best square wave response, adjusting the square-wave amplitude to 6 centimeters on each range.

VOLTS/CM	ADJUST (see Fig. 4-6)
10	C102
1	C104
. 1	C103

4-15 PHASE SHIFT ADJUST

Phase shift between Vertical and Horizontal Amplifiers.

If the square wave response of the Vertical and Horizontal Amplifier was carefully set, the relative phase shift between the two amplifiers should not exceed one degree at frequencies below 50 kc .

To check Phase Balance:

1) Set VERT. and HORIZ. SENSITIVITY to 50 miLLIVOLTS/CM and VERNIER to CAL.
2) Apply a 50 kc sine-wave signal to the HORIZ. INPUT and VERT. INPUT. Center pattern and adjust signal amplitude for 6 cm vertical and 6 cm horizontal deflection.

Figure 4-7. Sweep Generator Adjustment Locations

The opening of the pattern, if any, should not exceed a tenth of a centimeter. If necessary to correct phase difference, adjust C114 for closure of the pattern (Figure 4-6).

4-16 ADJUSTING PRESET

To adjust Preset refer to Figure 4-7 and proceed as follows:

1) Set VERT. SENSITIVITY to OFF, SWEEP TIME/CM switch to . 1 MILLISECOND and SWEEP MODE control maximum counterclockwise to PRESET. Set SYNC selector to INT.
2) Connect a dc voltmeter between ground (+) and the center tap of R220 the PRESET adjust control.
3) Turn R220 fully counterclockwise. Then slowly adjust R220 clockwise until the sweep generator begins to free fun. Turn R220 counterclockwise until the sweep just stops and record this voltage which should be about -26 volts.
4) Set R220 to give a voltmeter indication exactly 2 volts less negative than the voltage noted.

4-17 ADJUSTING THE SAWTOOTH GENERATOR AND SWEEP AMPLIFIER

To adjust the Sawtooth Generator and Sweep Amplifier refer to Figures 4-6 and 4-7 and proceed as follows:

1) Set SYNC to INT., SWEEP MODE to PRESET and TRIGGER LEVEL to " 0 '".
2) Set HORIZ. SENSITIVITY to INT. SWEEP Xl, SWEEP TIME/CM to 1 MILLISECOND, and its VERNIER to CAL.
3) Connect $1 \mathrm{kc}(1000 \mu \mathrm{sec})$ time markers to the Vertical INPUT.
4) Set R261, 1 Millisecond Adj., on the potentiometer board, to its mechanical center.
5) Adjust R134, Sweep Attenuator, (Figure 4-6) and HORIZ. POS. for approximately 1 time marker/ cm . This is a rather coarse adjustment. Set it as close as is practical. Then make the final adjustment with R261.
6) Set SWEEP TIME/CM to 10 MILLISECONDS and connect 100 cycle $(10,000 \mu \mathrm{sec})$ time markers to the Vertical INPUT.
7) Adjust R260 (Figure 4-7) for 1 marker per centimeter.
8) Set SWEEP TIME/CM to . 1 SECOND and connect 10 cycle ($100,000 \mu \mathrm{sec}$) time markers to the Vertical INPUT.
9) Adjust R259 (Figure 4-7) for 1 marker per centimeter.
10) Disconnect the time mark generator from the Vertical INPUT, set VERT. SENSITIVITY switch to 10 VOLTS/CM, the Vertical and Horizontal input switches to AC, and SWEEP TIME/ CM to 5 MICROSECONDS.
11) Disconnect the blue-white lead (Figure 4-7) from the Sweep Generator board and connect it through a 1 microfarad capacitor to the Horizontal INPUT. Set SYNC to EXT.
12) Connect a wire between V206 pin 1 (6AW8) and the Vertical INPUT.
13) Connect a 50 kc square wave from the 600 ohm output of the (bp Model 211A to the Horizontal INPUT and adjust its amplitude for about 6 centimeter deflection.
14) Adjust C113 near the HORIZ. SENSITIVITY switch, and C116 and C118 on the Horizontal Amplifier board (Figures 4-6 and 4-7), for best square wave presentation. Remove the wire between V206 pin 1 and the Vertical INPUT.
15) Reconnect the blue-white lead to the Sweep Generator board, and connect the time marker generator to the Vertical INPUT. Make the following adjustment as indicated for 1 time marker per centimeter.
(Fig. 4-7)

ime Marker	SWEEP TIME/CM	Adjust
$1 \mu \mathrm{sec}(1 \mathrm{mc})$	1 MICROSEC.	C227
$10 \mu \mathrm{sec}(100 \mathrm{kc})$	10 MICROSEC.	C225
. $1 \mathrm{msec}(10 \mathrm{kc}$)	. 1 MILLISEC.	C223

16) Set HORIZ. SENSITIVITY to INT. SWEEP X5, and adjust R164 (Figure 4-6), for markers 5 centimeters apart.
17) Connect a 500 kc signal to the Horizontal INPUT, set SWEEP TIME/CM to 1 MILLISECOND, set SYNC to EXT, and adjust R229, Sweep Length, (Figure 4-7) for a trace about 10.5 centimeters long.

SCHEMATIC DIAGRAM NOTES

1. Heavy solid line shows main signal path; heavy dashed line shows control, secondary signal, or feedback path.
2. Heavy box indicates front-panel engraving; light box indicates chassis marking.
3. Arrows on potentiometers indicate clockwise rotation as viewed from the round shaft end, counterclockwise from the rectangular shaft end.
4. Resistance values in ohms, inductance in microhenries, and capacitance in micromicrofarads unless otherwise specified.
5. Rotary switch schematics are electrical representations; for exact switching details refer to the switch assembly drawings.
6. Relays shown in condition prevailing during normal instrument operation.
7. \ddagger indicates a selected part. See parts list.
8. Interconnecting parts and assemblies are shown on cable diagram.
9. * indicated value adjusted at factory. Part may be omitted.

VOLTAGE AND RESISTANCE DIAGRAM NOTES

1. Each tube socket terminal is numbered and lettered to indicate the tube element and pin number, as follows:
$*=$ no tube element
$\mathbf{H}=$ heater
$\mathbf{K}=$ cathode
$\mathbf{G}=$ control grid
$\mathbf{S c}=$ screen grid
$\mathbf{S p}=$ suppressor grid
$\mathbf{H m}=$ heater mid-tap
IS $=$ internal shield

\mathbf{P}	$=$ plate
\mathbf{T}	$=$ target (plate)
\mathbf{R}	$=$ reflector or repeller
\mathbf{A}	$=$ anode (plate)
\mathbf{S}	$=$ spade
$\mathbf{S h}$	$=$ shield
NC	$=$ no external connection to socket
$\boldsymbol{\Delta}$	$=$ indefinite reading due to circuit (see 2.)

The numerical subscript to tube-element designators indicates the section of a multiple-section tube; the letter subscript to tube-element designators indicates the functional difference between like elements in the same tube section, such as t for triode and p for pentode.

A socket terminal with an asterisk may be used as a tie point and may have a voltage and resistance shown.
2. Voltages values shown are for guidance; values may vary from those shown due to tube aging or normal differences between instruments. Resistance values may vary considerably from those shown when the circuit contains potentiometers, crystal diodes, or electrolytic capacitors.
3. Voltage measured at the terminal is shown above the line, resistance below the line; measurements made with an electronic multimeter, from terminal to chassis ground unless otherwise noted.
4. A solid line between socket terminals indicates a connection external to the tube between the terminals; a dotted line between terminals indicates a connection inside the tube. Voltage and resistance are given at only one of the two joined terminals.

VERTICAL AMPLIFIER VOLTAGE-RESISTANCE DIAGRAM (VIEWED FROM ETCHED SIDE)

Table 5-2. Replaceable Parts

[^2]Table 5-2. Replaceable Parts (Cont'd)

HORIZONTAL AMPLIFIER VOLTAGE-RESISTANCE DIAGRAM (VIEWED FROM ETCHED SIDE)

SWEEP GENERATOR VOLTAGE-RESISTANCE DIAGRAM
 (VIEWED FROM RIGHT SIDE)

V 202 (12AT7)
TRIGGER GENERATOR

V203 (6U8)
SWEEP START-STOP TRIGGER

V204 (6C4)
GATE OUT CATHODE FOLLOWER

POWER SUPPLY REGULATOR

VOLTAGE-RESISTANCE DIAGRAM

Figure 4-15.

Table 5-1. Reference Designation Index

Circuit Reference	(40) Stock No.	Description	Note
C1	0170-0022	fxd, my, $0.1 \mu \mathrm{f} \pm 20 \%, 600 \mathrm{vdcw}$	
C2	0130-0006	var, cer, $5-20 \rho$ f, 500 vdcw	
C3	0131-0004	var, mica, 14-50 pf, 500 vdcw	
C4	0131-0001	var, mica, 50-380 ρ, 175 vdew	
C5	0140-0091	fxd , silver mica, 820 of $\pm 5 \%$, 500 vdcw	
C6	0140-0009	fxd, mica, $0.01 \mu \mathrm{f} \pm 5 \%$, 500 vdcw	
C7, 8	0150-0012	fxd, cer, $0.01 \mu \mathrm{f} \pm 20 \%, 1000$ vdew	
C9	0140-0040	fxd, mica, 75 of $\pm 5 \%, 500$ vdcw	
C10	0140-0004	fxd, mica, $15 \rho \mathrm{f} \pm 10 \%, 500$ vdew	
C11		Not Assigned	
C12	0131-0003	var, mica, 170-780 $\mathrm{\rho f}$, 175 vdcw	
C13	0140-0044	fxd, mica, $560 \mathrm{\rho f} \pm 10 \%$, 500 vdcw. Optimum value selected at factory. Average value shown.	
C14		Not Assigned	
C15, 16	0150~0031	fxd, $\mathrm{TiO}_{2}, 2 \rho \mathrm{ff} \pm 5 \% 500$ vdcw. Optimum value selected at factory. Average value shown.	
C17, 18	0150-0022	fxd, $\mathrm{TiO}_{2}, 3.3 \mathrm{\rho f} \pm 10 \%, 500 \mathrm{vdcw}$	
C19	0150-0031	fxd, $\mathrm{Ti} 0_{2}, 2 \rho \mathrm{f} \pm 5 \%, 500$ vdcw. Optimum value selected at factory. Average value shown.	
C20		Not Assigned	
C21	0150-0031	fxd, $\mathrm{TiO}_{2}, 2$ of $\pm 5 \%, 500$ vdcw. Optimum value selected at factory. Average value shown.	
C22	0150-0012	fxd, cer, $0.01 \mu \mathrm{f} \pm 20 \%$, 1000 vdcw	
C23 thru C100		Not Assigned	
C101	0170-0022	$\mathrm{fxd}, \mathrm{my}, 0.1 \mu \mathrm{f} \pm 20 \%, 600 \mathrm{vdcw}$	
C102	0130-0006	var, cer, $5-20 \mathrm{\rho f}, 500 \mathrm{vdcw}$	
C103	0131-0004	var, mica, 14-50 ρ f, 500 vdcw	
C104	0131-0001	var, mica, 50-380 ρ f, 175 vdcw	
C105	0140-0091	fxd, silver mica, 820 ff $\pm 5 \%$, 500 vdcw	
C106	0140-0009	fxd , mica, $0.01 \mu \mathrm{f} \pm 5 \%, 500$ vdcw	
C107, 108	0150-0012	fxd , cer, $0.01 \mu \mathrm{f} \pm 20 \%$, 1000 vdcw	
C109	0140-0040	fxd, mica, $75 \rho f \pm 5 \%, 500$ vdcw	
C110	0140-0004	fxd, mica, $15 \rho f \pm 10 \%, 500$ vdcw	
C111	0140-0056	fxd, mica, $200 \rho f \pm 10 \%, 500$ vdew	
C112		Not Assigned	
C113	0130-0001	var, cer, 7-45 pf, 500 vdcw	
C114	0131-0003	var, mica, 170-780 $\rho \mathrm{f}$, 175 vdcw	
C115	0140-0015	fxd, mica, 270 pf $\pm 10 \%, 500$ vdcw	
C116	0131-0004	var, mica, 14-50 pf, 500 vdcw	

\# See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	${ }^{(52)}$ Stock No.	Description	Note
C228	0170-0018	fxd, my, 1.0 $0 \mathrm{f} \pm 5 \%, 200 \mathrm{vdcw}$	
C229	0160-0013	fxd, paper, $0.1 \mu \mathrm{f} \pm 10 \%, 400$ vdcw	
C230	0160-0002	fxd, paper, $0.01 \mu \mathrm{f} \pm 10 \%$, 600 vdew	
C231	0140-0007	fxd, mica, 680 of $\pm 10 \%$, 500 vdew	
C232	0140-0027	fxd, mica, 470 of $\pm 10 \%$, 500 vdcw	
C233 thru C300		Not Assigned	
C301	0180-0012	fxd, elect, 2 sect, $20 \mu \mathrm{f} /$ sect, 450 vdcw	
C302	0180-0044	fxd , elect, $80 \mu \mathrm{f}, 300 \mathrm{vdcw}$	
C303	0180-0030	fxd, elect, 2 sect, $120 \times 40 \mu \mathrm{f}, 450$ vdcw。 Optimum value selected at factory. Average value shown.	
C304A, B	0180-0012	fxd, elect, 2 sect, $20 \mu \mathrm{f} /$ sect, 450 vdcw	
C305	0160-0040	fxd , paper, $0.1 \mu \mathrm{f} \pm 10 \%, 1000 \mathrm{vdcw}$	
C306, 307	0160-0054	fxd , tubular, $0.01 \mu \mathrm{f} \pm 20 \%, 400 \mathrm{vdcw}$	
C308	0160-0013	fxd , paper, $0.1 \mu \mathrm{f} \pm 10 \%, 400 \mathrm{vdcw}$	
C309	0160-0054	fxd, tubular, $0.01 \mu \mathrm{f} \pm 20 \%, 400 \mathrm{vdcw}$	
C310A, B	0180-0025	fxd, elect, 4 sect, $20 \mu \mathrm{f} /$ sect, 450 vdcw	
C311, 312	0160-0045	fxd , paper, 6800 of $\pm 10 \%, 5000 \mathrm{vdcw}$	
C313	0160-0062	fxd, paper, $0.015 \mu \mathrm{f} \pm 10 \%, 3000$ vdcw	
C314, 315	0160-0061	fxd, paper, 1500 ff $\pm 20 \%$, 5000 vdcw	
C316	0150-0024	fxd, cer, $0.02 \mu \mathrm{f} \pm 10 \%, 600 \mathrm{vdcw}$	
C317 thru C319		Not Assigned	
C320	0160-0054	fxd, tubular, $0.01 \mu \mathrm{f} \pm 20 \%, 400 \mathrm{vdcw}$	
C321		Not Assigned	
C322	0150-0023	fxd, cer, 2000 pf $\pm 20 \%, 1000$ vdcw	
C323	0140-0056	fxd, mica, 200 ¢f $\pm 10 \%, 500 \mathrm{vdcw}$	
C324	0160-0013	fxd , paper, $0.1 \mu \mathrm{f} \pm 10 \%, 400 \mathrm{vdcw}$	
C325	0160-0054	fxd , tubular, $0.01 \mu \mathrm{f} \pm 20 \%$, 400 vdcw	
C326	0160-0006	fxd , paper, $0.001 \mu \mathrm{f} \pm 10 \%$, 600 vdcw	
C327	0150-0012	fxd , cer, $0.01 \mu \mathrm{f} \pm 20 \%$, 1000 vdew	
C328	0160-0018	fxd, paper, $0.22 \mu \mathrm{f}, 400 \mathrm{vdcw}$	
CR301, 302	1883-0005	Diode, se	
CR303 thru CR306	1901-0007	Diode, Si: $500 \mathrm{ma}, 400 \mathrm{PIV}$	
F301	$\begin{aligned} & 2110-0006 \\ & 2110-0007 \end{aligned}$	Fuse, cartridge: $2 \mathrm{amp}, \mathrm{s}-\mathrm{b}$ for 115 V operation Fuse, cartridge: $1 \mathrm{amp}, \mathrm{s}-\mathrm{b}$ for 230 V operation	
I1, 2	2140-0008	Lamp, neon: $1 / 25 \mathrm{~W}, 90$ vdcw, 65 VAC, NE2	
I3 thru I100		Not Assigned	
$\text { I101, } 102$	2140-0008	Lamp, neon: $1 / 25 \mathrm{~W}, 90$ vdcw, 65 VAC, NE2	
I103 thru I200		Not Assigned	

\# See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	(4p) Stock No.	\# Description	Note
R22	0727-0105	fxd, dep c, 1200 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R23	0727-0112	fxd, dep c, 1800 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R24		Not Assigned	
R25	0727-0124	fxd , dep c, 3 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R26, 27		Not Assigned	
R28	0727-0140	fxd, dep c, 6 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R29, 30	0727-0152	fxd, dep c, 9 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R31, 32	0727-0168	fxd , dep c, 15 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R33, 34	0687-1011	fxd, comp, 100 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R35, 36	0757-0023	$\mathrm{fxd}, \mathrm{mfg}, 41,200$ ohms $\pm 1 \%, 1 \mathrm{~W}$	
R37	0757-0024	$\mathrm{fxd}, \mathrm{mfg}, 49,900$ ohms $\pm 1 \%$, 1 W	
R38	2100-0006	var, ww, 5 K ohms $\pm 10 \%, 2 \mathrm{~W}$	
R39	0687-5611	fxd, comp, 560 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R40	2100-0091	var, comp, 5 K ohms $\pm 30 \%, 1 / 3 \mathrm{~W}$, lin	
R41	0757-0025	fxd, mfg, 806 K ohms $\pm 1 \%, 1 \mathrm{~W}$	
R42, 43	0687-1011	fxd, comp, 100 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R44	0757-0025	fxd, mfg, 806 K ohms $\pm 1 \%$, 1 W	
R45	0689-5125	fxd, comp, 5100 ohms $\pm 5 \%$, 1 W	
R46	0693-2231	fxd, comp, 22 K ohms $\pm 10 \%, 2 \mathrm{~W}$	
R47	0693-1031	fxd, comp, 10 K ohms $\pm 10 \%, 2 \mathrm{~W}$	
R48	0693-2231	fxd , comp, 22 K ohms $\pm 10 \%, 2 \mathrm{~W}$	
R49	0689-5125	fxd , comp, 5100 ohms $\pm 5 \%, 1 \mathrm{~W}$	
R50, 51	0687-1011	fxd, comp, 100 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R52 thru R100		Not Assigned	
R101	0730-0103	fxd, dep c, 900 K ohms $\pm 1 \%, 1 \mathrm{~W}$	
R102	0727-0203	fxd, dep c, 90 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R103	0727-0152	fxd, dep $\mathrm{c}, 9 \mathrm{~K}$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R104	0727-0100	fxd , dep $\mathrm{c}, 1 \mathrm{~K}$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R105	0727-0274	$f x d, \operatorname{dep} c, 1 \cdot M \pm 1 \%, 1 / 2 W$	
R106, 107	0687-1041	fxd, comp, 100 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R108, 109	0687-1011	fxd, comp, 100 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R110A, B	2100-0147	var, dual concentric, lin, rear sect: 250 ohms $\pm 10 \%$ front sect: 10 K ohms $\pm 10 \%, 2 \mathrm{~W}$	
R111	0687-2751	fxd, comp, 2.7 M $\pm 10 \%$, $1 / 2 \mathrm{~W}$	
R112	0730-0058	fxd, dep $\mathrm{c}, 75 \mathrm{~K}$ ohms $\pm 1 \%$, 1 W	
R113		Not Assigned	
R114, 115	0757-0012	fxd, $\mathrm{mfg}, 100 \mathrm{~K}$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R116, 117	0757-0022	$\mathrm{fxd}, \mathrm{mfg}, 30,900$ ohms $\pm 1 \%, 1 \mathrm{~W}$	

\# See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	(40) Stock No.	\# Description	Note
R206, 207	0692-3935	fxd, comp, 39 K ohms $\pm 5 \%, 2 \mathrm{~W}$	
R208	0687-1251	fxd, comp, $1.2 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{~W}$	
R209		nsr; Part of S202	
R210	0727-0287	fxd , dep c, $2 \mathrm{M} \pm 1 \%$, 1/2 W	
R211	0687-4701	fxd , comp, 47 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R212	0686-3625	fxd, comp, 3600 ohms $\pm 5 \%, 1 / 2 \mathrm{~W}$	
R213	0687-3321	fxd , comp, 3300 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R214	0692-3035	fxd, comp, 30 K ohms $\pm 5 \%, 2 \mathrm{~W}$	
R215	0727-0223	fxd, dep c, 216, 300 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R216	0727-0228	fxd, dep c, 252 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R217	0730-0091	fxd, dep c, 479 K ohms $\pm 1 \%, 1 \mathrm{~W}$	
R218		nsr; Part of S203	
R219	0687-1241	fxd, comp, 120 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R220	2100-0095	var, comp, lin, 100 K ohms $\pm 30 \%, 1 / 4 \mathrm{~W}$	
R221	0687-2731	fxd, comp, 27 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R222	0686-7555	fxd, comp, $7.5 \mathrm{M} \pm 5 \%, 1 / 2 \mathrm{~W}$	
R223	0689-1635	fxd, comp, 16 K ohms $\pm 5 \%$, 1 W	
R224	0692-6235	fxd, comp, 62 K ohms $\pm 5 \%, 2 \mathrm{~W}$	
R225	0771-0004	$\mathrm{fxd}, \mathrm{mfg}, 20 \mathrm{~K}$ ohms $\pm 10 \%, 4 \mathrm{~W}$	
R226		Not Assigned	
R227	0727-0228	fxd, dep c, 252 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R228	0727-0230	fxd, dep c, 284 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R229	2100-0102	var, comp, lin, 500 K ohms $\pm 30 \%, 1 / 4 \mathrm{~W}$	
R230	0687-3941	fxd, comp, 390 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R231	0687-2741	fxd, comp, 270 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R232	0686-1025	fxd, comp, 1 K ohms $\pm 5 \%, 1 / 2 \mathrm{~W}$	
R233	0690-3331	fxd, comp, 33 K ohms $\pm 10 \%, 1 \mathrm{~W}$	
R234	0693-8231	fxd, comp, 82 K ohms $\pm 10 \%, 2 \mathrm{~W}$	
R235	0687-4711	fxd, comp, 470 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R236	0687-2731	fxd, comp, 27 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R237	0687-4711	fxd, comp, 470 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R238	0693-6831	fxd, comp, 68 K ohms $\pm 10 \%, 2 \mathrm{~W}$	
R239	0687-1011	fxd, comp, 100 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R240	2100-0102	var, comp, lin, 500 K ohms $\pm 30 \%, 1 / 4 \mathrm{~W}$	
R241	0730-0096	fxd, dep c, 683.7 K ohms $\pm 1 \%, 1 \mathrm{~W}$	
R242	0687-3351	fxd, comp, 3.3 M $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R243	0687-1051	fxd , comp, $1 \mathrm{M} \pm 10 \%$, $1 / 2 \mathrm{~W}$	

\# See introduction to this section

Table 5-1. Reference Designation Index (Cont')

Circuit Reference	(40) Stock No.	\# Description	Note
R324	0690-1041	fxd, comp, 100 K ohms $\pm 10 \%, 1 \mathrm{~W}$	
R325	0687-1021	fxd, comp, 1 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R326	0690-1231	fxd, comp, 12 K ohms $\pm 10 \%, 1 \mathrm{~W}$	
R327	0687-2231	fxd, comp, 22 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R328	0687-4721	fxd, comp, 4700 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R329	0690-1251	fxd, comp, $1.2 \mathrm{M} \pm 10 \%$, 1 W	
R330	0687-1021	fxd , comp, 1 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R331	0727-0276	fxd , dep c, $1 \mathrm{M} \pm 1 \%$, 1/2 W	
R332	2100-0144	var, comp, lin, 250 K ohms $\pm 30 \%, 1 / 4 \mathrm{~W}$	
R333	0727-0281	fxd , dep c, 1. $39 \mathrm{M} \pm 1 \%, 1 / 2 \mathrm{~W}$	
R334	2100-0096	var, comp, lin, $1 \mathrm{M} \pm 30 \%, 1 / 4 \mathrm{~W}$	
R335	0836-0002	fxd , $\operatorname{dep} \mathrm{c}, 20 \mathrm{M} \pm 10 \%, 1 \mathrm{~W}$	
R336	2100-0112	var, comp, lin, $5 \mathrm{M} \pm 30 \%, 1 / 2 \mathrm{~W}$	
R337	0727-0274	fxd , dep c, $1 \mathrm{M} \pm 1 \%, 1 / 2 \mathrm{~W}$	
R338	0687-2731	fxd , comp, 27 K ohms $\pm 10 \%$, $1 / 2 \mathrm{~W}$	
R339	0690-2251	fxd, comp, $2.2 \mathrm{M} \pm 10 \%$, 1 W	
R340		Not Assigned	
R341	0687-1031	fxd, comp, 10 K ohms $\pm 10 \%$, 1/2 W	
R342		Not Assigned	
R343	2100-0080	var, comp, $\operatorname{lin}, 1 \mathrm{M}, \pm 30 \%, 1 / 4 \mathrm{~W}$	
R344, 345		Not Assigned	
R346	0836-0003	fxd , $\operatorname{dep} \mathrm{c}, 29 \mathrm{M} \pm 10 \%$, 1 W	
R347		Not Assigned	
R348	0690-2741	fxd, comp, 270 K ohms $\pm 10 \%$, 1 W	
R349	0693-2231	fxd , comp, 22 K ohms $\pm 10 \%, 2 \mathrm{~W}$	
R350	0687-4731	fxd, comp, 47 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R351	0687-1021	fxd, comp, 1 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R352	0692-2025	fxd, comp, 2 K ohms $\pm 5 \%, 2 \mathrm{~W}$	
R353	0689-5115	fxd, comp, 510 ohms $\pm 5 \%$, 1 W	
R354	0687-2721	fxd, comp, 2700 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R355, 356	0687-6831	fxd , comp, 68 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R357	2100-0140	var, ww, lin, 25 ohms $\pm 10 \%, 2 \mathrm{~W}$, includes S301	
R358	0690-6841	fxd, comp, 680 K ohms $\pm 10 \%$, 1 W	
R359	0727-0253	fxd, dep $\mathrm{c}, 750 \mathrm{~K}$ ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$	
R360	0687-1061	fxd, comp, $10 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{~W}$	
R361	0690-5631	fxd , comp, 56 K ohms $\pm 10 \%, 1 \mathrm{~W}$	
R362	0690-1541	fxd, comp, 150 K ohms $\pm 10 \%$, 1 W	
R363		Not Assigned	

\# See introduction to this section

Table 5-1. Reference Designation Index (Cont'd)

Circuit Reference	(40) Stock No.	\# Description	Note
V202	1932-0027	Tube, elect: 12AT7	
V203	1933-0004	Tube, elect: 6U8	
V204	1921-0005	Tube, elect: 6C4	
V205	1930-0019	Tube, elect: 12AL5	
V206	1933-0002	Tube, elect: 6AW8A	
V207	1932-0030	Tube, elect: 12AX7	
V208 thru V 300		Not Assigned	
V301	1921-0010	Tube, elect: 12B4A	
V302	1923-0021	Tube, elect: 6AU6	
V 303	1921-0010	Tube, elect: 12B4A	
V304	1923-0027	Tube, elect: 6BH6	
V305	1930-0016	Tube, elect: 6X4	
V306	1921-0010	Tube, elect: 12B4A	
V307	1923-0027	Tube, elect: 6BH6	
V308	1940-0001	Tube, elect: 5651	
V309	2090-0007	Tube, elect, cathode-ray type (Normally supplied with P1 phosphor. Also available are P2, P5 and P7.)	
V310, 311	1920-0001	Tube, elect: 5642	
V312	1932-0029	Tube, elect: 12AU7	
V313	1923-0018	Tube, elect: 6AQ5	
V314	1932-0022	Tube, elect: 6DJ8	
		MISCELLANEOUS	
	120A-20A	CRT bezel	
	120A-83A	Filter, light: amber	
	120A-83B	Filter, light: blue	
	120A-83G	Filter, light: green	
	1400-0084	Fuseholder	
	130B-11B	High voltage oscillator and rectifier assy	
	1400-0056	Holder, rectifier	
	1450-0020	Jewel, for pilot lamp	
	$\mathrm{G}-74 \mathrm{D}$	Knob: FOCUS, INTENSITY, SCALE LIGHT	
	G-74G	Knob: VERT. POS. , HORIZ. POS	
	G-74L	Knob: TRIGGER LEVEL	
	G-74Q	Knob: VERT SENSITIVITY, HORIZ SENSITIVITY, SYNC TIME SWEEP TIME	
	$\mathrm{G}-74 \mathrm{AT}$	Knob: TRIGGER SLOPE	
	$\mathrm{G}-74 \mathrm{AU}$	Knob: VERNIER, VERT. SENSITIVITY, HORIZ SENSITIVITY, SYNC TIME, SWEEP TIME	
	G-74BJ	Knob: VERT. and HORIZ DC BAL	
	1450-0022	Socket assy, pilot lamp	

\# See introduction to this section

Table 5-2. Replaceable Parts (Cont'd)

Table 5-2. Replaceable Parts (Cont'd)

[^3]
APPENDIX

CODE LIST OF MANUFACTURERS (Sheet 1 of 2)

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and $\mathrm{H} 4-2$ (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H 4 handbooks.

CODE

NO. MANUFACTURER

00334 Humidial Co.

00335 Westrex Corp.

00373 Garlock Packing Co.
Electronic Products' Div.

00656 Aerovox Corp

00779 Amp, Inc.
00781 Aircraft Radio Corp.
00853 Sangamo Electric Company,
Ordill Division (Capacitors) Marion, III. 00866 Goe Engineering Co. Los Angeles, Calif. 00891 Carl E. Holmes Corp. Los Angeles, Calif. 01121 Allen Bradley Co. Milwaukee, Wis. 01255 Litton Industries, Inc. Beverly Hills, Calif. 01281 Pacific Semiconductors, Inc.

Culver City, Calif.
01295 Texas Instruments, Inc.
Transistor Products Div. 01349 The Alliance Mfg. Co. 01561 Chassi-Trak Corp.
01589 Pacific Relays, Inc.
01930 Amerock Corp.
Dallas, Texas Alliance, Ohio 02114 Ferroxcube Corp. of America

Saugerties, N.Y 02286 Cole Mfg. Co. Palo Alto, Calif. 02660 Amphenol-Borg Electronics Corp.

Ćhicago, III.
02735 Radio Corp. of America
Semiconductor and Materials Div.
Somerville, N.J.
02771 Vocaline Co. of America, Inc. Old Saybrook, Conn.
02777 Hopkins Engineering Co
San Fernan
03508 G.E. Semiconductor Products Dept. N Y
03705 Apex Machine \& Tool Co. Dayton, Ohio
03797 Eldema Corp. El Monte, Calif.
03877 Transitron Electronic Corp. Wakefield, Mass.
03888 Pyrofilm Resistor Co. Morristown, N.J.
03954 Air Marine Motors, Inc. Los Angeles, Calif.
04009 Arrow, Hart and Hegeman Elect. Co.
Hartford, Conn.
04062 Elmenco Products Co. New York, N.Y.
$04222 \mathrm{Hi}-\mathrm{Q}$ Division of Aerovox Myrtle Beach, S.C.
04298 Elgin National Watch Co., Electronics Division

Burbank, Calif.
04404 Dymec Division of
Hewlett-Packard Co. Electronic Tube Div. Mount
4713 Motorola Inc. Semiconductor Prod. Div.
04732 Filtron Co., Inc.
Western Division
04773 Automatic Electric Co. Culver City, Calif.
04870 PM Motor Co. Chicago, III.
05006 Twentieth Century Plastics, Inc.
Los Angeles, Calif.
05277 Westinghouse Electric Corp., Youngwood, Pa.
05593 Illumitronic Engineering Co.
05624 Barber Colman Co.
nnyvale, Calif.
05729 Metropolitan Telecommunications Corp. Metro Cap. Dir.

Brooklyn, N.Y.
05783 Stewart Engineering Co. Santa Cruz, Calif.
06004 The Bassick Co. Bridgeport, Conn.
06555 Beede Electrical Instrument Co., Inc.
06812 Torrington Mfg. Co., West Div.
07115 Corning Glass Works $\begin{gathered}\text { Electronic Components Dept }\end{gathered}$
07126 Digitran Co.
Pasaderd, Pa.
Pasadena, Calif. enacook, N.H.
Van Nuys, Calif.

CODE

07137 Transistor Electronics Corp.
07138 Westinghouse Electric Corp
inneapolis, Minn.
7261 Electronic Tube Div.

Elmira, N.Y.
07261 Avnet Corp. Los Angeles, Calif.
07263 Fairchild Semiconductor Corp.
Mountain View, Calif.
07910 Continental Device Corp. Hawthorne, Calif. 07933 Rheem Semiconductor Corp.
07980 Boonton Radio Corp.
Boonton, N.J.
0815 U.S. Engineering Co.
Los Angeles, Calif.
08358 Burgess Battery Co.
Niagara Falls, Ontario, Canada
08717 Sloan Company Burbank, Calif.
08718 Cannon Electric Co.
08792 CBS Electronics Semiconductor
Phoenix, Ariz.
Operations, Div. of C.B.S. Inc
Lowell, Mass.
09026 Babcock Relays, Inc. Costa Mesa, Calif. 09134 Texas Capacitor Co. Houston, Texas 09250 Electro Assemblies, Inc. Chicago, III.
09569 Mallory Battery Co. of $\begin{aligned} & \text { Canada, Ltd. Toronto, Ontario, Canada }\end{aligned}$
10411 Ti-Tal, Inc. Berkeley, Calif.
10646 Carborundum Co. Niagara Falls, N.Y. 11236 CTS of Berne, Inc. Berne, Ind. 11237 Chicago Telephone of California, Inc.

So. Pasadena, Calif.
11312 Microwave Electronics Corp.
Palo Alto, Calif.
11711 General Instrument Corporation
Semiconductor Division Newark, N.J.
11717 Imperial Electronics, Inc. Buena Park, Calif.
11870 Melabs, Inc. Palo Alto, Calif.
12697 Clarostat Mfg. Co. Dover, N.H.
14655 Cornell Dubilier Elec. Corp.
So. Plainfield, N.J.
15909 The Daven Co. Livingston, N.J.
16758 Delco Radio Div. of G. M. Corp.
Kokomo, Ind.
18873 E. I. DuPont and Co., Inc. Wilmington, Del.
19315 Eclipse Pioneer, Div. of
Bendix Aviation Corp. Teterboro, N.J.
$19500 \begin{gathered}\text { Thomas A. Edison Industries, } \\ \text { Div. of McGraw-Edison Co. }\end{gathered}$
19701 Electra Manufacturing Ca: Kast Orange, N.J. 20183 Electronic Tube Corp. Philadelphia, Pa 21520 Fansteel Metallurgical Corp.

No. Chicago, III.
21335 The Fafnir Bearing Co. New Britain, Conn 21964 Fed. Telephone and Radio Corp.
24446 General Electric Co. Schenectady, N.Y. 24455 G.E., Lamp Division
24655 Nela Park, Cleveland, Ohio Wadio Co. West Concord, Mass. 26462 Grobet File Co. of America, Inc.
26992 Hamilton Watch Co. Caristadt, N.J
28480 Hewlett-Packard Co. Palo Alto, Calif. 33173 G.E. Receiving Tube Dept. Owensboro, Ky. 35434 Lectrohm Inc.

Chicago, III. 37942 P. R. Mallory \& Co., Inc. Indianapolis, Ind. 39543 Mechanical Industries Prod. Co.

Akron, Ohio
40920 Miniature Precision Bearings, Inc.
Keene, N.H.
42190 Muter Co.
43990 C. A. Norgren Co. Englewood, Colo
44655 Ohmite Mfg. Co. Skokie, III.
47904 Polaroid Corp.

CODE
NO. MANUFACTURER ADDRESS
$48620 \begin{gathered}\text { Precision Thermometer and } \\ \text { Inst. Co. }\end{gathered}$
49956 Raytheon Company Lexington, Mass.
54294 Shallcross Mfg. Co. Selma, N.C. 55026 Simpson Electric Co. Chicago, III.
55933 Sonotone Corp. Elmsford, N.Y. 55938 Sorenson \& Co., Inc. So. Norwalk, Conn. 56137 Spaulding Fibre Co., Inc. Tonawanda, N.Y. 56289 Sprague Electric Co. North Adams, Mass. 59446 Telex, Inc. St. Paul, Minn. 61775 Union Switch and Signal, Div. of

Westinghouse Air Brake Co. Swissvale, Pa,
62119 Universal Electric Co. Owosso, Mich.
64959 Western Electric Co., Inc. New York, N.Y.
65092 Weston Inst. Div. of Daystrom, Inc.
66346 Wollensak Optical Co. Rochester, N.Y.
70276 Allen Mfg. Co. Hartford, Conn.
70309 Allied Control Co., Inc. New York, N.Y. 70485 Atlantic India Rubber Works, In
70563 Amperite Co., Inc. Nhicago, III.
70903 Belden Mfg. Co. Chicago, III.
70998 Bird Electronic Corp. Cleveland, Ohio
71002 Birnbach Radio Co. New York, N.Y.
71041 Boston Gear Works Div. of
Murray Co. of Texas
Quincy, Mass.
71218 Bud Radio Inc. Cleveland, Ohio
71286 Camloc Fastener Corp. Paramus, N.J.
71313 Allen D. Cardwell Electronic
Prod. Corp.
Plainville, Conn.
71400 Bussmann Fuse Div. of McGraw-
Edison Co.
St. Louis, Mo.
71450 CTS Corp. Elkhart, Ind.
71468 Cannon Electric Co. Los Angeles, Calif.
71471 Cinema Engineering Co. Burbank, Calif.
71482 C. P. Clare \& Co. Chicago, III
71528 Standard-Thomson Corp.,
Clifford Mfg. Co. Div. Waltham, Mass.
71590 Centralab Div. of Globe Union Inc.
Milwaukee, Wis.
71700 The Cornish Wire Co. New York, N.Y.
71744 Chicago Miniature Lamp Works
71753 A. O. Smith Corp., Crowley Div.
71785 Cinch Mfg. Corp. \quad Chicago, III.
71984 Dow Corning Corp. Midland, Mich.
72136 Electro Motive Mfg. Co., Inc.
72354 John E. Fast \& Co. Willimantic, Conn.
72619 Dialight Corp. Brooklyn, N.Y.
72656 General Ceramics Corp. Keasbey, N.J.
72758 Girard-Hopkins Oakland, Calif.
72765 Drake Mfg. Co. Chicago, III.
72825 Hugh H. Eby Inc. Philadelphia, Pa.
72928 Gudeman Co. Chicago, III.
72982 Erie Resistor Corp. Erie, Pa.
73061 Hansen Mfg. Co., Inc. Princeton, Ind
73138 Helipot Div. of Beckman Fullerton, Calif.
73293 Hughes Products Division of
73445 Amperex Electronic Co., Div. of
North American Phillips Co., Inc.
Hicksville, N.Y.
73506 Bradley Semiconductor Corp. Hamden, Conn.
73559 Carling Electric, Inc.
Hartford, Conn.
73682 George K. Garrett Co., Inc.
73743 Fischer Special Mfg. Co. Cincinnati, Ohio
73793 The General Industries Co. Elyria, Ohio
73905 Jennings Radio Mfg. Co. San Jose, Calif. Cambridge, Mass. 74455 J. H. Winns, and Sons Winchester, Mass.

\begin{abstract}[^4]\end{abstract}

 줄右

00015-19
Revised: 6 December 1961
From: F.S.C. Handbook Supplements
H4-1 Dated October 1961
H4-2 Dated November 1961

APPENDIX
 CODE LIST OF MANUFACTURERS (Sheet 2 of 2)

	MANUFACTURER ADDRESS
74861	Industrial Condenser Corp. Chicago, III.
74868	R.F. Products Division of Amphe Borg Electronics Corp.
74970	E. F. Johnson Co. Waseca, Minn.
75042	International Resistance Co. Philadelphia, Pa,
75173	Jones, Howard B., Division of Cinch Mfg. Corp. Chicago, III.
75378	James Knights Co
75382	Kulka Electric Corporation Mt. Vernon, N.Y.
75818	Lenz Electric Mfg. Co. Chicago, III.
75915	Littelfuse Inc. Des Plaines, III.
76005	Lord Mfg. Co. Erie, Pa.
76210	C. W. Marwedel
7	Micamold Electronic Mfg. Corp. Brooklyn, N.Y.
76	James Millen Mfg. Co., Inc. Malden, Mass.
76493	J. W. Miller Co. Los Angeles, Calif.
7653	Monadnock Mills San Leandro, Calif.
76545	Mueller Electric Co. Cleveland, Ohio
76854	Oak Manufacturing Co. Chicago, III.
77068	Bendix Pacific Division of Bendix Corp.
77221	Phaostron Instrument and Electronic Co. South Pasadena, Calif.
77342	Potter and Brumfield, Div. of American Machine and Foundry Princeton, Ind.
77630	Radio Condenser Co. Camden, N.J.
77638	Radio Receptor Co., Inc. Brooklyn, N.Y.
77764	Re
78283	Signal Indicator Corp.
78471	Tilley Mfg. Co. San Francisco, Calif.
78488	Stackpole Carbon Co. St. Marys, Pa.
7855	Tinnerman Products, Inc. Cleveland, Ohio
78790	Transformer Engineers Pasadena, Calif.
78947	Ucinite Co. Newtonville, Mass.
79142	Veeder Root, Inc. Hartford, Conn.
79	Wenco Mfg. Co. Chicago, III.
79727	Continental-Wirt Electronics Corp. Philadelphia, Pa.
79	Zierick Mfg. Corp. New Rochelle, N.Y.
8003	```Mepco Division of Sessions Clock Co. Morristown, N.J.```
801	Times Facsimile Corp. New York, N.Y.
80131	Electronic Industries Association Any brand tube meeting EIA standards Washington, D.C.
80207	Unimax Switch, Div. of W. L. Maxson Corp.
80248	Oxford Electric Corp. Chicago, III.
80	Bourns Laboratories, Inc. Riverside, Calif.
80411	Acro Div. of Robertshaw Fulton Controls Co. Columbus 16, Ohio
80486	All Star Products Inc. Defiance, Ohio
80583	Hammerlund Co., Inc. New Yor
80640	Stevens, Arnold, Co., Inc. Boston, Mass.
81	ional Instruments,
	Wilkor Products, Inc. Cle
81	Raytheon Mfg. Co., Industrial Components Div., Industr. Tube Operations Newton, Mass.
83	El Segundo, Calif.
81860	Barry Controls, Inc. Watertown, Mass.
820	Carter Parts Co. Skokie, III.
82142	Jeffers Electronics Division of Speer Carbon Co. Du Bois, Pa.
8217	Allen B. DuMont Labs., Inc. Clifton, N.J.
82209	Maguire Industries, Inc. Greenwich, Conn.
82219	Sylvania Electric Prod. Inc., Electronic Tube Div. Emporium, Pa.
823	Astron Co. East Newark, N.J.
82389	Switcheraft, Inc. Chicago, III.
82647	Metals and Controls, Inc., Div. of Texas Instruments, Inc., Spencer Prods.
82866	Research Products Corp. Madison, W

$\begin{aligned} & \text { CODE } \\ & \text { NO. } \end{aligned}$	MANUFACTURER ADDRESS
82877	Rotron Manufacturing Co., Inc. Woodstock, N.Y.
82893	Vector Electronic Co. Glendale, Calif.
83058	Carr Fastener Co. Cambridge, Mass.
83125	Pyramid Electric Co. Darlington, S.C.
83148	Electro Cords Co. Los Angeles, Calif.
83186	Victory Engineering Corp. Union, N.J.
83298	Bendix Corp., Red Bank Div. Red Bank, N.J.
83330	Smith, Herman H., Inc. Brooklyn, N.Y.
83501	Gavitt Wire and Cable Co., Div. of Amerace Corp. Brookfield, Mass.
83594	Burroughs Corp., Electronic Tube Div. Plainfield, N.J.
83777	Model Eng. and Mfg., Inc. Huntington, Ind.
83821	Loyd Scruggs Co. Festus, Mo.
84171	Arco Electronics, Inc. New York, N.Y.
84396	A. J. Glesener Co., Inc. San Francisco, Calif.
84411	Good All Electric Mfg. Co. Ogallala, Neb.
84970	Sarkes Tarzian, Inc. Bloomington, Ind.
85454	Boonton Molding Company Boonton, N.J.
85474	R. M. Bracamonte \& Co. San Francisco, Calif.
85660	Koiled Kords, Inc. New Haven, Conn.
85911	Seamless Rubber Co. Chicago, III.
86684	Radio Corp. of America, RCA Electron Tube Div.
87216	Phileo Corp. (Lansdale Division) Lansdale, Pa.
87473	Western Fibrous Glass Products Co. San Francisco, Calif.
88140	Cutler-Hammer, Inc. Lincoln, III.
89473	General Electric Distributing Corp. Schenectady, N.Y.
89636	Carter Parts Div. of Economy Baler Co. Chicago, III.
89665	United Transformer Co. Chicago, III.
90179	U.S. Rubber Co., Mechanical Goods Div.
90970	Bearing Engineering Co. San Francisco, Calif.
91260	Connor Spring Mfg. Co. San Francisco, Calif.
91418	Radio Materials Co. Chicago, III.
91506	Augat Brothers,'Inc. Attleboro, Mass.
91637	Dale Electronics, Inc. Columbus, Nebr.
91662	Elco Corp. Philadelphia, Pa.
91737	Gremar Mfg. Co., Inc. Wakefield, Mass.
91827	K F Development Co. Redwood City, Calif.
91921	Minneapolis-Honeywell Regulator Co., Micro-Switch Division Freeport, III.
92196	Universal Metal Products, Inc. Bassett Puente, Calif.
93332	Sylvania Electric Prod. Inc., Semiconductor Div. Woburn, Mass.
93369	Robbins and Myers, Inc. New York, N.Y.
93410	Stevens Mfg. Co., Inc. Mansfield, Ohio
93983	Insuline-Van Norman Ind., Inc. Electronic Division Manchester, N.H.
94144	Raytheon Mfg. Co., Industrial Components Div., Receiving Tube Operation Quincy, Mass.
94145	Raytheon Mfg. Co., Semiconductor Div., California Street Plant Newton, Mass.
94148	Scientific Radio Products, Inc
94154	Tung-Sol Electric, Inc. Newark, N.J.
94197	Curtiss-Wright Corp., Electronics Div. East Paferson, N.J.
94310	Tru Ohm Prod. Div. of Model Engineering and Mfg. Co.
94682	Worcester Pressed Aluminum Corp. Worcester, Mass.
95236	Allies Products Corp. Miami, Fla.
95238	Continental Connector Corp. Woodside, N.Y.
95263	Leecraft Mfg. Co., Inc. New York, N.Y.
95264	Lerco Electronics, Inc. Burbank, Calif.
95265	National Coil Co.Sheridan, Wyo. Vitramon, Inc. Bridgeport, Conn.

CODE
NO. MANUFACTURER ADDRESS
95354 Methode Mfg. Co.
95987 Weckesser Co.
Chicago, III.
Chicago, III.
96067 Huggins Laboratories Sunnyvale, Calif.
96095 Hi-Q Division of Aerovox Olean, N.Y.
96256 Thordarson-Meissner Div,
Mt. Carmel, III. 96296 Solar Manufacturing Co. Los Angeles, Calif. 96330 Carlton Screw Co. Chicago, III. 96341 Microwave Associates, Inc. Burlington, Mass. 96501 Excel Transformer Co. Oakland, Calif.
97539 Automatic and Precision Mfg . Co.

Yonkers, N.Y.
97966 CBS Electronics,
Div, of C.B.S., Inc.
Danvers, Mass.
Jamaica, N.Y.
98220 Francis L. Mosley Pasadena, Calif. 98278 Microdot, Inc. 98291 Sealectro Corp. 98405 Carad Corp. Mamaroneck, N.Y. 98734 Palo Alto Engineering Co., Inc.

Redwood City, Calif.

8925 Clevite Transistor Prod
Mineola, N.Y. iv.

Waltham, Mass.
98978 International Electronic Research Corp.

Burbank, Calif. 99109 Columbia Technical Corp. New York, N.Y. 99313 Varian Associates Palo Alto, Calif.
99515 Marshall Industries, Electron Products Division Pasaden
99707 Control Switch Division, Controls Co. $\begin{gathered}\text { El Segundo, Calif. } \\ \text { of America }\end{gathered}$
99800 Delevan Electronics Corp. East Aurora, N.Y.
99848 Wilco Corporation Indianapolis, Ind.
99934 Renbrandt, Inc. Boston, Mass.
99942 Hoffman Semiconductor Div. of Hoffman Electronics Corp. Evanston, III.
99957 Technology Instrument Corp. of Calif. Newbury Park, Calif.

HE FOLLOWING H-P VENDORS HAVE NO NUMBER ASSIGNED IN THE LATEST SUPPLEMENT TO THE FEDERAL SUPPLY CODE FOR MANUFACTURERS HANDBOOK.
0000 F Malco Tool and Die Los Angeles, Calif. 00001 Telefunken ($c / 0$ American Elite)

New York, N.Y. 0000 L Winchester Electronics, Inc. ta Monica, Calif. 0000 M Western Coil Div. of Automatic Ind., Inc. Redwood City, Calif. 000 N Nahm-Bros. Spring Co. San Leandro, Calif. 000 P Ty-Car Mfg. Co., Inc. Holliston, Mass. 0000 T Texas Instruments, Inc.

Versailles, Ky. 0000 U Tower Mfg. Corp. 0000 W Webster Electronics Co. Inc. $0000 \times$ Spruce Pine Mica Co. Spruce Pine, N.C. 000 Y Midland Mfg. Co. Inc. Kansas City, Kans. 0000 Z Willow Leather Products Corp. Newark, N.J. 000 A A British Radio Electronics Ltd.
lashington, D.C
000 B B Precision Instrument Components Co
000 C C Computer Diode Corp. Lodi, N.J. O O D General Transistor Los Angeles, Calif. OOOEE A. Williams Manufacturing Co.

San Jose, Calif
000 FF Carmichael Corrugated Specialties
ichmond, Calif
000 G G Goshen Die Cutting Service Goshen, Ind.

00015-19

[^0]: * Valley and Wallman, "Vacuum Tube Amplifier", Massachusetts Institute of Technology Radiation Series, vol. 18, pp 441-451. McGraw-Hill Book Company, Inc., New York, 1948.

[^1]: * Millman and Taub, 'Pulse and Digital Circuits" pp 216-228, McGraw-Hill Book Company, Inc., New York, 1956.

[^2]: \# See introduction to this section

[^3]: \# See introduction to this section

[^4]:
 #### Abstract

